To read the full version of this content please select one of the options below:

On using the Gaussian and hyperbolic distributions to improve quality in construction

Vivian W.Y. Tam (Griffith School of Engineering, Griffith University, Gold Coast, Australia)
Khoa N. Le (Griffith School of Engineering, Griffith University, Gold Coast, Australia)

Journal of Engineering, Design and Technology

ISSN: 1726-0531

Article publication date: 11 July 2008

Abstract

Purpose

Various method have been used by organisations in the construction industry to improve quality, employing mainly two major techniques: management techniques such as quality control, quality assurance, total quality management; and statistical techniques such as cost of quality, customer satisfaction and the six sigma principle. The purpose of this paper is to show that it is possible to employ the six sigma principle in the field of construction management provided that sufficient information on a particular population is obtained.

Design/methodology/approach

Statistical properties of the hyperbolic distribution are given and quality factors such as population in range, number of defects, yield percentage and defects per million opportunities are estimated. Graphical illustrations of the hyperbolic and Gaussian distributions are also given. From that, detailed comparisons of these two distributions are numerically obtained. The impacts of these quality factors are briefly discussed to give a rough guidance to organisations in the construction industry on how to lower cost and to improve project quality by prevention. A case study on a construction project is given in which it is shown that the hyperbolic distribution is better suited to the cost data than the Gaussian distribution. Cost and quality data of all projects in the company are collected over a period of eight years. Each project may consist of a number of phases, typically spanning about three months. Each phase can be considered as a member of the project population. Quality factors of this population are estimated using the six sigma principle.

Findings

The paper finds that by using a suitable distribution, it is possible to improve quality factors such as population in range, yield percentage and number of defects per million opportunities.

Originality/value

This paper is of value in assessing the suitability of the hyperbolic and Gaussian distributions in modelling the population and showing that hyperbolic distribution can be more effectively used to model the cost data than the Gaussian distribution.

Keywords

Citation

Tam, V.W.Y. and Le, K.N. (2008), "On using the Gaussian and hyperbolic distributions to improve quality in construction", Journal of Engineering, Design and Technology, Vol. 6 No. 2, pp. 112-123. https://doi.org/10.1108/17260530810891261

Publisher

:

Emerald Group Publishing Limited

Copyright © 2008, Emerald Group Publishing Limited