To read the full version of this content please select one of the options below:

Wave propagation in transversely isotropic generalized thermoelastic half‐space with voids under initial stress

Rajneesh Kumar (Department of Mathematics, Kurukshetra University, Kurukshetra, India)
Rajeev Kumar (Department of Mathematics, Kurukshetra University, Kurukshetra, India)

Multidiscipline Modeling in Materials and Structures

ISSN: 1573-6105

Article publication date: 15 November 2011

Abstract

Purpose

The purpose of this paper is to study the wave propagation in transversely isotropic generalized thermoelastic half‐space with voids under initial stress.

Design/methodology/approach

The authors analyze the wave propagation and reflection of plane waves incident at the stress free, thermally insulated or isothermal surface of a homogeneous, transversely isotropic generalized thermoelastic half‐space with voids. The graphical representation is given for amplitude ratios of various reflected waves to that of incident waves for different direction of propagation. The phase velocities and attenuation coefficients of plane waves are also computed and presented graphically for various incident angles.

Findings

The phase velocities and attenuation coefficients of these plane waves are computed along various direction of wave propagation and the reflection characteristics of these waves, stress free, thermally insulated or isothermal boundary conditions are considered. The amplitude ratios of various reflected waves to that of incident waves have been obtained numerically.

Originality/value

Wave propagation in an elastic medium is of great practical importance. Since valuable organic and inorganic deposits beneath the earth surface are difficult to detect by drilling randomly, wave propagation is the simplest and most economic technique and does not require any drilling through the earth. Almost all the oil companies rely on seismic interpretation for selecting the sites for exploratory oil wells because seismic wave methods have higher accuracy, higher resolution and are more economical, compared to drilling, which is expensive and time consuming. The study described in this paper would be very useful for those involved in signal processing, sound system and wireless communication.

Keywords

Citation

Kumar, R. and Kumar, R. (2011), "Wave propagation in transversely isotropic generalized thermoelastic half‐space with voids under initial stress", Multidiscipline Modeling in Materials and Structures, Vol. 7 No. 4, pp. 440-468. https://doi.org/10.1108/15736101111185306

Publisher

:

Emerald Group Publishing Limited

Copyright © 2011, Emerald Group Publishing Limited