Books and journals Case studies Expert Briefings Open Access
Advanced search

Artificial neural network vs linear discriminant analysis in credit ratings forecast: A comparative study of prediction performances

Kuldeep Kumar (Faculty of Information Technology, Bond University, Queensland, Australia)
Sukanto Bhattacharya (Department of Business Administration, Alaska Pacific University, Anchorage, Alaska, USA)

Review of Accounting and Finance

ISSN: 1475-7702

Publication date: 1 July 2006

Abstract

Purpose

–

The purpose of this paper is to perform a comparative study of prediction performances of an artificial neutral network (ANN) model against a linear prediction model like a linear discriminant analysis (LDA) with regards to forecasting corporate credit ratings from financial statement data.

Design/methodology/approach

–

The ANN model used in the study is a fully connected back‐propagation model with three layers of neurons. The paper uses a comparative approach whereby two prediction models – one based on ANN and the other based on LDA are developed using identically partitioned data set.

Findings

–

The study found that the ANN model comprehensively outperformed the LDA model in both training and test partitions of the data set. While the LDA model may have been hindered by omitted variables; this actually lends further credence to the ANN model showing that the latter is more robust in dealing with missing data.

Research limitations/implications

–

A possible drawback in the model implementation probably lies in the selection of the various accounting ratios. Perhaps future replications of this study should look more carefully at choosing the ratios after duly addressing the problems of collinearity and duplications more rigorously.

Practical implications

–

The findings of this study imply that since ANN models can better deal with complex data sets and do not require restraining assumptions like linearity and normality, it may be overall a better approach in corporate credit rating forecasts that uses large financial data sets.

Originality/value

–

This study brings out the effectiveness of non‐linear pattern learning models as compared to linear ones in forecasts of financial solvency. This goes on to further highlight the practical importance of the new breed of computational tools available to techno‐savvy financial analysts and also to the providers of corporate credit.

Keywords

  • Credit rating
  • Neutral nets
  • Forecasting
  • Financial analysis
  • Pattern recognition

Citation

Kumar, K. and Bhattacharya, S. (2006), "Artificial neural network vs linear discriminant analysis in credit ratings forecast: A comparative study of prediction performances", Review of Accounting and Finance, Vol. 5 No. 3, pp. 216-227. https://doi.org/10.1108/14757700610686426

Download as .RIS

Publisher

:

Emerald Group Publishing Limited

Copyright © 2006, Emerald Group Publishing Limited

Please note you do not have access to teaching notes

You may be able to access teaching notes by logging in via Shibboleth, Open Athens or with your Emerald account.
Login
If you think you should have access to this content, click the button to contact our support team.
Contact us

To read the full version of this content please select one of the options below

You may be able to access this content by logging in via Shibboleth, Open Athens or with your Emerald account.
Login
To rent this content from Deepdyve, please click the button.
Rent from Deepdyve
If you think you should have access to this content, click the button to contact our support team.
Contact us
Emerald Publishing
  • Opens in new window
  • Opens in new window
  • Opens in new window
  • Opens in new window
© 2021 Emerald Publishing Limited

Services

  • Authors Opens in new window
  • Editors Opens in new window
  • Librarians Opens in new window
  • Researchers Opens in new window
  • Reviewers Opens in new window

About

  • About Emerald Opens in new window
  • Working for Emerald Opens in new window
  • Contact us Opens in new window
  • Publication sitemap

Policies and information

  • Privacy notice
  • Site policies
  • Modern Slavery Act Opens in new window
  • Chair of Trustees governance statement Opens in new window
  • COVID-19 policy Opens in new window
Manage cookies

We’re listening — tell us what you think

  • Something didn’t work…

    Report bugs here

  • All feedback is valuable

    Please share your general feedback

  • Member of Emerald Engage?

    You can join in the discussion by joining the community or logging in here.
    You can also find out more about Emerald Engage.

Join us on our journey

  • Platform update page

    Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

  • Questions & More Information

    Answers to the most commonly asked questions here