To read this content please select one of the options below:

Design study for a capacitive ceramic pressure sensor

Marina Santo Zarnik (HIPOT‐RR, Otočec, Slovenia and Jozef Stefan Institute, Ljubljana, Slovenia)
Darko Belavič (HIPOT‐RR, Otočec, Slovenia and Jozef Stefan Institute, Ljubljana, Slovenia)
Srečko Maček (Jozef Stefan Institute, Ljubljana, Slovenia)

Microelectronics International

ISSN: 1356-5362

Article publication date: 2 August 2011




The purpose of this paper is to consider a capacitive pressure sensor fabricated using low‐temperature cofired ceramic (LTCC) materials and technology as a candidate for an energy‐autonomous sensor application. Designing the 3D capacitive sensor structure, with the cofired thick‐film electrodes inside the narrow air gap in the LTCC substrate, was a challenging task, particularly due to the presence of the parasitic elements influencing the sensor's characteristics.


In this work, different design variants for the thick‐film electrodes of the capacitive sensing structure were studied and compared. The test sensors were designed for the pressure range 0‐10 kPa and manufactured with readout electronics based on a capacitance‐to‐digital conversion.


The typical sensitivity obtained was 4 fF/kPa, and the temperature coefficient of the sensitivity was 0.03%/°C. The design variant with the guard‐ring electrode showed the best rms resolution of 50 Pa. One drawback of the application could be the sensitivity to atmospheric humidity and the influence of the different media.


This paper focuses on the design of a capacitive gas‐pressure sensor in a 3D LTCC structure. The present study provides a good basis for further optimisation of the design of the cofired electrodes in the capacitive sensing structure.



Santo Zarnik, M., Belavič, D. and Maček, S. (2011), "Design study for a capacitive ceramic pressure sensor", Microelectronics International, Vol. 28 No. 3, pp. 31-35.



Emerald Group Publishing Limited

Copyright © 2011, Emerald Group Publishing Limited

Related articles