To read this content please select one of the options below:

High photoluminescence of silicon nanostructures synthesized by laser‐induced etching

Asmiet Ramizy (Nano‐Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, Penang, Malaysia)
Khalid Omar (Nano‐Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, Penang, Malaysia)
Z. Hassan (Nano‐Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, Penang, Malaysia)

Microelectronics International

ISSN: 1356-5362

Article publication date: 26 January 2010

259

Abstract

Purpose

The purpose of this paper is to synthesize Si (porous silicon (PS)) by laser‐induced etching (LIE) technique. The LIE process has the added advantage of a controlling size and optical properties without using of electrodes. The LIE process is a promising technique for fabricating many optoelectronic devices including: light‐emitting devices, detectors, sensors and large‐scale integrated circuits.

Design/methodology/approach

PS has been fabricated by LIE technique. Surface morphology and structural properties of nanostructures are characterized by using scanning electron microscopy and X‐ray diffraction (XRD). Photoluminescence (PL) measurement is also performed at room temperature by using He‐Cd laser (λ=325 nm) and Raman scattering has been investigated using Ar+ laser (λ=514 nm).

Findings

Surface morphology indicated that chemical reaction has been initiated with laser power density of 12 W/cm2, resulting in irregular structure. Micro‐columns are structured on surface with laser power density of 25 W/cm2. The pores structures are confined to smaller size, and the walls between the pore become extremely thin and shorter at 64 W/cm2 power density and 120 min irradiation time. PL spectra at room temperature for PS prepared at power density of 64 W/cm2 and irradiation time of 120 min shows the blue shift of PL at 400 nm and the full‐width and half maximum is about 60 nm. The broadening of the band gap energy occurs with a decrease of the crystallite size. The average diameter of nanosize Si crystallites is about 6‐10 nm. XRD indicated that the broadening in spectrum is due to the small size crystallites.

Originality/value

LIE processes have been used to produce high‐luminescent nanocrystallites with small size and size distribution, which is due to the quantum confinement effect.

Keywords

Citation

Ramizy, A., Omar, K. and Hassan, Z. (2010), "High photoluminescence of silicon nanostructures synthesized by laser‐induced etching", Microelectronics International, Vol. 27 No. 1, pp. 45-48. https://doi.org/10.1108/13565361011009522

Publisher

:

Emerald Group Publishing Limited

Copyright © 2010, Emerald Group Publishing Limited

Related articles