Analysis of macroscopic momentum equation in a columnar mushy zone
International Journal of Numerical Methods for Heat & Fluid Flow
ISSN: 0961-5539
Article publication date: 22 May 2008
Abstract
Purpose
This paper aims to tackle the problem of some ambiguity of the momentum equation formulation in the commonly used macroscopic models of two‐phase solid/liquid region, developing during alloy solidification. These different appearances of the momentum equation are compared and the issue is addressed of how the choice of the particular form affects velocity and temperature fields.
Design/methodology/approach
Attention is focused on the ensemble averaging method, which, owing to its stochastic nature, is a new promising tool for setting up the macroscopic transport equations in highly inhomogeneous multiphase micro‐ and macro‐structures, with morphology continuously changing in time when the solidification proceeds. The basic assumptions of the two other continuum models, i.e. based on the classical mixture theory and on the volume‐averaging technique, are also unveiled. These three different forms of the momentum equation are then compared analytically and their impact on calculated velocity and temperature distribution in the mushy zone is studied for the selected test problem of binary alloy solidification driven by diffusion and thermal natural convection in a square mould.
Findings
It is found that a chosen appearance of the momentum equation mildly affects temporal velocity/temperature, and shapes of the phase interface at longer times of the solidification.
Research limitations/implications
This mainly results from small variations of the liquid fraction across the mushy zone and from a low solidification rate, and it may change drastically when anisotropic properties of the mushy zone, solutal convection, different phase densities and cooling conditions are considered. Therefore, further comprehensive study is needed.
Originality/value
The paper addresses how the different focus of the momentum equation for liquid flow is compared.
Keywords
Citation
Furmański, P. and Banaszek, J. (2008), "Analysis of macroscopic momentum equation in a columnar mushy zone", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 18 No. 3/4, pp. 533-544. https://doi.org/10.1108/09615530810853718
Publisher
:Emerald Group Publishing Limited
Copyright © 2008, Emerald Group Publishing Limited