To read this content please select one of the options below:

Analysis of macroscopic momentum equation in a columnar mushy zone

Piotr Furmański (Institute of Heat Engineering, Warsaw University of Technology, Warszawa, Poland)
Jerzy Banaszek (Institute of Heat Engineering, Warsaw University of Technology, Warszawa, Poland)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 22 May 2008

374

Abstract

Purpose

This paper aims to tackle the problem of some ambiguity of the momentum equation formulation in the commonly used macroscopic models of two‐phase solid/liquid region, developing during alloy solidification. These different appearances of the momentum equation are compared and the issue is addressed of how the choice of the particular form affects velocity and temperature fields.

Design/methodology/approach

Attention is focused on the ensemble averaging method, which, owing to its stochastic nature, is a new promising tool for setting up the macroscopic transport equations in highly inhomogeneous multiphase micro‐ and macro‐structures, with morphology continuously changing in time when the solidification proceeds. The basic assumptions of the two other continuum models, i.e. based on the classical mixture theory and on the volume‐averaging technique, are also unveiled. These three different forms of the momentum equation are then compared analytically and their impact on calculated velocity and temperature distribution in the mushy zone is studied for the selected test problem of binary alloy solidification driven by diffusion and thermal natural convection in a square mould.

Findings

It is found that a chosen appearance of the momentum equation mildly affects temporal velocity/temperature, and shapes of the phase interface at longer times of the solidification.

Research limitations/implications

This mainly results from small variations of the liquid fraction across the mushy zone and from a low solidification rate, and it may change drastically when anisotropic properties of the mushy zone, solutal convection, different phase densities and cooling conditions are considered. Therefore, further comprehensive study is needed.

Originality/value

The paper addresses how the different focus of the momentum equation for liquid flow is compared.

Keywords

Citation

Furmański, P. and Banaszek, J. (2008), "Analysis of macroscopic momentum equation in a columnar mushy zone", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 18 No. 3/4, pp. 533-544. https://doi.org/10.1108/09615530810853718

Publisher

:

Emerald Group Publishing Limited

Copyright © 2008, Emerald Group Publishing Limited

Related articles