To read the full version of this content please select one of the options below:

Multidimensional modeling of two‐phase flow and heat transfer

Michael Z. Podowski (Center for Multiphase Research, Rensselaer Polytechnic Institute, Troy, New York, USA)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 22 May 2008



This paper seeks to discuss a mechanistic modeling concept for local phenomena governing two‐ and multi‐phase flows and heat transfer.


An overview is given of selected issues concerning the formulation of multidimensional models of two‐phase flow and heat transfer. A complete computational multiphase fluid dynamics (CMFD) model of two‐phase flow is presented, including local constitutive models applicable to two‐phase flows in heated channels. Results are shown of model testing and validation.


It has been demonstrated that the overall model is capable of capturing various local flow and heat transfer phenomena in general, and the onset of temperature excursion (CHF) in low quality forced‐convection boiling, in particular.

Research limitations/implications

Whereas the multiphase model formulation is applicable to a large class of problems, geometries and operating conditions, the closure laws and results are focused on forced‐convection boiling in heated channels.

Practical implications

The proposed approach can be used to predict multidimensional velocity field and phase distribution in two‐phase flow devices and components used in thermal power plants, nuclear power plants and chemical processing plants.


A complete mechanistic multidimensional model of forced‐convection boiling in heated channels is given. The potential of a CMFD approach is demonstrated to perform virtual experiments that can be used in system design and optimization, and in safety analysis.



Podowski, M.Z. (2008), "Multidimensional modeling of two‐phase flow and heat transfer", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 18 No. 3/4, pp. 491-513.



Emerald Group Publishing Limited

Copyright © 2008, Emerald Group Publishing Limited