An advanced impingement/film cooling scheme for gas turbines – numerical study

A. Immarigeon (Department of Mechanical and Industrial Engineering, Concordia University, Montréal, Canada)
I. Hassan (Department of Mechanical and Industrial Engineering, Concordia University, Montréal, Canada)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Publication date: 1 June 2006

Abstract

Purpose

The present study aims to conduct a numerical investigation of a novel film cooling scheme combining in‐hole impingement cooling and flow turbulators with traditional downstream film cooling, and was originally proposed by Pratt & Whitney Canada for high temperature gas turbine applications.

Design/methodology/approach

Steady‐state simulations were performed and the flow was considered incompressible and turbulent. The CFD package FLUENT 6.1 was used to solve the Navier‐Stokes equations numerically, and the preprocessor, Gambit, was used to generate the required grid.

Findings

It was determined that the proposed scheme geometry can prevent coolant lift‐off much better than standard round holes, since the cooling jet remains attached to the surface at much higher blowing rates, indicating a superior performance for the proposed scheme.

Research limitations/implications

The present study was concerned only with the downstream effectiveness aspect of performance. The performance related to the heat transfer coefficient is a prospective topic for future studies.

Practical implications

Advanced and innovative cooling techniques are essential in order to improve the efficiency and power output of gas turbines. This scheme combines in‐hole impingement cooling and flow turbulators with traditional downstream film cooling for improved cooling capabilities.

Originality/value

This new advanced cooling scheme both combines the advantages of traditional film cooling with those of impingement cooling, and provides greater airfoil protection than traditional film cooling. This study is of value for those interested in gas turbine cooling.

Keywords

Citation

Immarigeon, A. and Hassan, I. (2006), "An advanced impingement/film cooling scheme for gas turbines – numerical study", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 16 No. 4, pp. 470-493. https://doi.org/10.1108/09615530610653091

Download as .RIS

Publisher

:

Emerald Group Publishing Limited

Copyright © 2006, Emerald Group Publishing Limited

Please note you might not have access to this content

You may be able to access this content by login via Shibboleth, Open Athens or with your Emerald account.
If you would like to contact us about accessing this content, click the button and fill out the form.
To rent this content from Deepdyve, please click the button.