To read this content please select one of the options below:

Computational simulation of the printing of Newtonian liquid from a trapezoidal cavity

C.A. Powell (Department of Colour Chemistry, University of Leeds, Leeds, UK)
M.D. Savage (Department of Colour Chemistry, University of Leeds, Leeds, UK)
J.T. Guthrie (Department of Colour Chemistry, University of Leeds, Leeds, UK)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 1 June 2002

676

Abstract

A Lagrangian finite element algorithm is described for solving two‐dimensional, time‐dependent free surface fluid flows such as those that occur in industrial printing processes. The algorithm is applied using a problem specific structured meshing strategy, implemented with periodic remeshing to control element distortion. The method is benchmarked on the problem of a stretching filament of viscous liquid, which clearly demonstrates the applicability of the approach to flows involving substantial free surface deformation. The model printing problem of the transfer of Newtonian liquid from an upturned trapezoidal trench (3‐D cavity with a large transverse aspect ratio) to a horizontal substrate, which is pulled perpendicularly downwards from the cavity, is solved computationally using the Lagrangian scheme. The idealized 2‐D liquid motion is tracked from start‐up to the point where a thin sheet forms – connecting the liquid remaining in the cavity to a “sessile” drop on the moving substrate. The effect of varying substrate separation speed is briefly discussed and predictions are made for approximate drop volumes and “limiting” domain lengths.

Keywords

Citation

Powell, C.A., Savage and Guthrie, J.T. (2002), "Computational simulation of the printing of Newtonian liquid from a trapezoidal cavity", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 12 No. 4, pp. 338-355. https://doi.org/10.1108/09615530210433251

Publisher

:

MCB UP Ltd

Copyright © 2002, MCB UP Limited

Related articles