To read this content please select one of the options below:

Photochromic properties of 1′,3′,3′‐trimethyl‐6‐nitrospiro[2H‐1‐benzopyran‐2,2′‐indoline] doped in PMMA and epoxy resin thin films

A.A. Bahajaj (Department of Chemistry, Hadhramout University of Science and Technology, Mukalla, Republic of Yemen)
A.M. Asiri (Chemistry Department, Faculty of Science, King Abdul Aziz University, Jeddah, Saudi Arabia)
A.M. Alsoliemy (Chemistry Department, Faculty of Science, King Abdul Aziz University, Jeddah, Saudi Arabia)
A.G. Al‐Sehemi (Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia)

Pigment & Resin Technology

ISSN: 0369-9420

Article publication date: 23 March 2010

492

Abstract

Purpose

The purpose of this paper is to evaluate the photochromic performance of photochromic compounds in polymer matrices.

Design/methodology/approach

The poly(methyl methacrylate) (PMMA) and epoxy resin doped with photochromic spirobenzopyran were prepared and the effects of ultraviolet (UV) irradiation were studied using spectrophotometer. The reversible reaction was effected using white light. Photochemical fatigue resistance of these films was also studied.

Findings

Irradiation of colourless 1′,3′,3′‐trimethyl‐6‐nitrospiro[2H‐1‐benzopyran‐2,2′‐indoline] spiropyran (SP) doped in PMMA and epoxy resin with UV light (366 nm) results in the formation of an intense purple‐red coloured zwitterionic photomerocyanine (PMC). The reverse reaction was photochemically induced by irradiation with white light. Photocolouration of SP doped in PMMA follows a first‐order rate equation (k=0.0011 s−1), while that doped in epoxy resin deviates from linearity. It was found that photobleaching follows a first‐order equation in both matrices. The photobleaching rate constant of PMC in both matrices is the same and equals 0.0043 s−1. Spirobenzopyran doped in PMMA shows better fatigue resistance than that doped in epoxy resin.

Research limitations/implications

The PMMA and epoxy resin polymers doped with photochromic spirobenzopyran described in the present paper were prepared and studied. The principle of study established can be applied to any type of polymer or to any type of photochromic compounds.

Practical implications

The photochromic materials developed can be used for different applications, such as coatings and holography.

Originality/value

The method developed may be used to enhance the performance of photochromic materials.

Keywords

Citation

Bahajaj, A.A., Asiri, A.M., Alsoliemy, A.M. and Al‐Sehemi, A.G. (2010), "Photochromic properties of 1′,3′,3′‐trimethyl‐6‐nitrospiro[2H‐1‐benzopyran‐2,2′‐indoline] doped in PMMA and epoxy resin thin films", Pigment & Resin Technology, Vol. 39 No. 2, pp. 71-76. https://doi.org/10.1108/03699421011028644

Publisher

:

Emerald Group Publishing Limited

Copyright © 2010, Emerald Group Publishing Limited

Related articles