Emerald logo
Advanced search

Concurrent processing of mixed‐integer non‐linear programming problems

Ralf Östermark (Department of Business Administration, School of Business, Åbo Akademi University, Åbo, Finland)

Kybernetes

ISSN: 0368-492X

Publication date: 12 June 2009

Abstract

Purpose

–

To discuss a new parallel algorithmic platform (minlp_machine) for complex mixed‐integer non‐linear programming (MINLP) problems.

Design/methodology/approach

–

The platform combines features from classical non‐linear optimization methodology with novel innovations in computational techniques. The system constructs discrete search zones around noninteger discrete‐valued variables at local solutions, which simplifies the local optimization problems and reduces the search process significantly. In complicated problems fast feasibility restoration may be achieved through concentrated Hessians. The system is programmed in strict ANSI C and can be run either stand alone or as a support library for other programs. File I/O is designed to recognize possible usage in both single and parallel processor environments. The system has been tested on Alpha, Sun and Linux mainframes and parallel IBM and Cray XT4 supercomputer environments. The constrained problem can, for example, be solved through a sequence of first order Taylor approximations of the non‐linear constraints and feasibility restoration utilizing Hessian information of the Lagrangian of the MINLP problem, or by invoking a nonlinear solver like SQP directly in the branch and bound tree. minlp_machine( ) has been tested as a support library to genetic hybrid algorithm (GHA). The GHA(minlp_machine) platform can be used to accelerate the performance of any linear or non‐linear node solver. The paper introduces a novel multicomputer partitioning of the discrete search space of genuine MINLP‐problems.

Findings

–

The system is successfully tested on a small sample of representative MINLP problems. The paper demonstrates that – through concurrent nonlinear branch and bound search – minlp_machine( ) outperforms some recent competing approaches with respect to the number of nodes in the branch and bound tree. Through parallel processing, the computational complexity of the local optimization problems is reduced considerably, an important aspect for practical applications.

Originality/value

–

This paper shows that binary‐valued MINLP‐problems will reduce to a vector of ordinary non‐linear programming on a suitably sized mesh. Correspondingly, INLP‐ and ILP‐problems will require no quasi‐Newton steps or simplex iterations on a compatible mesh.

Keywords

  • Cybernetics
  • Parallel programming
  • Gradient methods
  • Optimization techniques

Citation

Östermark, R. (2009), "Concurrent processing of mixed‐integer non‐linear programming problems", Kybernetes, Vol. 38 No. 6, pp. 966-989. https://doi.org/10.1108/03684920910973180

Download as .RIS

Publisher

:

Emerald Group Publishing Limited

Copyright © 2009, Emerald Group Publishing Limited

Please note you might not have access to this content

You may be able to access this content by login via Shibboleth, Open Athens or with your Emerald account.
Login
To rent this content from Deepdyve, please click the button.
Rent from Deepdyve
If you would like to contact us about accessing this content, click the button and fill out the form.
Contact us
Emerald Publishing
  • Opens in new window
  • Opens in new window
  • Opens in new window
  • Opens in new window
© 2019 Emerald Publishing Limited

Services

  • Authors Opens in new window
  • Editors Opens in new window
  • Librarians Opens in new window
  • Researchers Opens in new window
  • Reviewers Opens in new window

About

  • About Emerald Opens in new window
  • Working for Emerald Opens in new window
  • Contact us Opens in new window
  • Publication Sitemap

Policies and information

  • Legal Opens in new window
  • Editorial policy Opens in new window & originality guidelines Opens in new window
  • Site policies
  • Modern Slavery Act Opens in new window

We’re listening — tell us what you think

  • Something didn’t work…

    Report bugs here

  • All feedback is valuable

    Please share your general feedback

  • Member of Emerald’s Library Advisory Network?

    You can start or join in a discussion here.
    If you’d like to know more about The Network, please email us

Join us on our journey

  • Platform update page

    Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

  • Frequently Asked Questions

    Your questions answered here