Reconstructability analysis with Fourier transforms
Abstract
Fourier methods used in two‐ and three‐dimensional image reconstruction can be used also in reconstructability analysis (RA). These methods maximize a variance‐type measure instead of information‐theoretic uncertainty, but the two measures are roughly collinear and the Fourier approach yields results close to that of standard RA. The Fourier method, however, does not require iterative calculations for models with loops. Moreover, the error in Fourier RA models can be assessed without actually generating the full probability distributions of the models; calculations scale with the size of the data rather than the state space. State‐based modeling using the Fourier approach is also readily implemented. Fourier methods may thus enhance the power of RA for data analysis and data mining.
Keywords
Citation
Zwick, M. (2004), "Reconstructability analysis with Fourier transforms", Kybernetes, Vol. 33 No. 5/6, pp. 1026-1040. https://doi.org/10.1108/03684920410534083
Publisher
:Emerald Group Publishing Limited
Copyright © 2004, Emerald Group Publishing Limited