To read this content please select one of the options below:

Interlaced resolution scheme for the simultaneous analysis of brain electric activity and conductivity with combined EEG/MEG diagnostics

I.M.V. Caminiti (Dip. di Ingegneria dell'Informazione, Seconda Università di Napoli, Aversa, Italy)
A. Formisano (Dip. di Ingegneria dell'Informazione, Seconda Università di Napoli, Aversa, Italy)
R. Martone (Dip. di Ingegneria dell'Informazione, Seconda Università di Napoli, Aversa, Italy)
F. Ferraioli (Ansaldo Energia, PDE/ISV/EMA R&D Electrical Machines, Napoli, Italy)
172

Abstract

Purpose

The purpose of this paper is to evaluate the performances of a resolution scheme able to follow the dynamics of brain tissue properties in combined ElectroEncefaloGraphic (EEG) – MagnetoEncefaloGraphic (MEG) techniques for the brain analysis, minimizing the computation burden.

Design/methodology/approach

The estimation process in combined EEG‐MEG is performed by a Moore‐Penrose pseudo‐inverse computation. This is affected by the uncertain knowledge of the living tissues' electric properties. In principle, it is possible to estimate those properties from the EEG‐MEG signals. The estimation process becomes in this case non‐linear. A resolution scheme is proposed, based on the exploitation of the different dynamics characterizing sources and tissues properties.

Findings

The proposed resolution scheme provides a reasonable estimate of the sources for a computationally affordable frequency of non‐liner estimations.

Research limitations/implications

The proposed approach has not been tested yet on experimental data, and as such, its sensitivity to environmental uncertainty is not known yet.

Practical implications

The proposed strategy can be easily implemented to perform realistic measurement processing.

Originality/value

The paper presents a novel strategy to estimate tissues properties and EEG‐MEG signal sources based on the exploitation of their different dynamics, possibly taking advantages from an impedance tomography preliminary analysis for the tissue properties dynamics.

Keywords

Citation

Caminiti, I.M.V., Formisano, A., Martone, R. and Ferraioli, F. (2010), "Interlaced resolution scheme for the simultaneous analysis of brain electric activity and conductivity with combined EEG/MEG diagnostics", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Vol. 29 No. 6, pp. 1533-1541. https://doi.org/10.1108/03321641011078607

Publisher

:

Emerald Group Publishing Limited

Copyright © 2010, Emerald Group Publishing Limited

Related articles