Application of MLP and RBF neural networks in the control structure of the drive system with elastic joint

Teresa Orlowska‐Kowalska (Institute of Electrical Machines, Drives and Measurements, Wroclaw University of Technology, Wroclaw, Poland)
Marcin Kaminski (Institute of Electrical Machines, Drives and Measurements, Wroclaw University of Technology, Wroclaw, Poland)

Abstract

Purpose

The purpose of this paper is to obtain an estimation of not measured mechanical state variables of the drive system with elastic coupling between the driven motor and a load machine, using neural networks (NN) of different type for the sensorless drive system.

Design/methodology/approach

The load‐side speed and the torsional torque are estimated using multi‐layer perceptron (MLP) and radial basis function (RBF) networks. The special forms of input vectors for neural state estimators were proposed and tested in open‐ and closed‐loop control structure. The estimation quality as well as sensitivity of neural estimators to the changes of the inertia moment of the load machine were evaluated and compared.

Findings

It is shown that an application of RBF‐based neural estimators can give better accuracy of the load speed and torsional torque estimation, especially for the proper choice of the input vector of NN, also in the case of a big change of the load machine time constant.

Research limitations/implications

The investigation and comparison is based on simulation tests and looked mainly at the quality of state variable estimation while the realisation cost in parallel processing devices (FPGA) still need to be addressed.

Practical implications

The proposed neural state variable estimators of two‐mass system can be practically implemented in the control structure of two‐mass drive with additional feedbacks from load machine speed and torsional torque, which results in the successive vibration damping.

Originality/value

The application of RBF neural state estimators for two‐mass drive and their comparison with commonly used MLP‐based estimators, as well as testing of both type of NN in the closed‐loop control structure with additional feedbacks based on state variables estimated by neural estimators.

Keywords

Citation

Orlowska‐Kowalska, T. and Kaminski, M. (2009), "Application of MLP and RBF neural networks in the control structure of the drive system with elastic joint", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Vol. 28 No. 3, pp. 556-569. https://doi.org/10.1108/03321640910940846

Download as .RIS

Publisher

:

Emerald Group Publishing Limited

Copyright © 2009, Emerald Group Publishing Limited

Please note you might not have access to this content

You may be able to access this content by login via Shibboleth, Open Athens or with your Emerald account.
If you would like to contact us about accessing this content, click the button and fill out the form.
To rent this content from Deepdyve, please click the button.