To read the full version of this content please select one of the options below:

Description of electrical machine windings in the finite element space

Andrzej Demenko (Poznań University of Technology, Poznań, Poland)

Abstract

Purpose

This paper seeks to develop 3D finite element methods for the electromagnetic field calculation in electrical machines and to present the discrete methods of winding description.

Design/methodology/approach

The 3D finite element models of electrical machine windings are considered. Attention is paid to the windings with stranded conductors. The finite element equations are considered as the equations of magnetic networks. The formulation of matrix that transforms winding currents into the field sources is discussed. This matrix is also used in the calculations of flux linkages. In the proposed method, the winding loops are replaced by a set of plane loops. The field sources are defined by the numbers of these loops around the element edges and loops associated with element facets.

Findings

The presented description is the 3D finite element representation of MMF description used in the classical models of electrical machines. The advantage of the proposed approach is that the source description can be successfully applied in the FE method using single scalar potential. In addition, the presented approach guarantees a good convergence of ICCG procedure of solving edge element equations for ungauged formulation using magnetic vector potential.

Originality/value

The applied analogies between the finite element formulation and the equivalent magnetic network models help to formulate an efficient method of field source description. The developed method allows one to apply single magnetic scalar potential in the 3D finite element analysis of electrical machines.

Keywords

Citation

Demenko, A. (2008), "Description of electrical machine windings in the finite element space", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Vol. 27 No. 4, pp. 711-719. https://doi.org/10.1108/03321640810878108

Publisher

:

Emerald Group Publishing Limited

Copyright © 2008, Emerald Group Publishing Limited