TY - JOUR AB - Purpose– The purpose of this paper is to discuss, with numerical simulations, magnetohydrodynamic (MHD) natural convection laminar flow from an isothermal horizontal circular cylinder immersed in a fluid with viscosity proportional to a linear function of temperature.Design/methodology/approach– The governing boundary layer equations are transformed into a non‐dimensional form and the resulting nonlinear system of partial differential equations are reduced to convenient form, which are solved numerically by two very efficient methods: implicit finite difference method together with Keller box scheme; and direct numerical scheme.Findings– Numerical results are presented by velocity and temperature distributions of the fluid as well as heat transfer characteristics, namely the shearing stress and the local heat transfer rate in terms of the local skin‐friction coefficient and the local Nusselt number for a wide range of MHD parameter, viscosity‐variation parameter and viscous dissipation parameter.Originality/value– MHD flow in this geometry with temperature dependent viscosity is absent in the literature. IN this paper, the results obtained from the numerical simulations have been verified by two methodologies. VL - 29 IS - 8 SN - 0264-4401 DO - 10.1108/02644401211271636 UR - https://doi.org/10.1108/02644401211271636 AU - Molla Mamun AU - Saha Suvash C. AU - Khan M.A.I. PY - 2012 Y1 - 2012/01/01 TI - MHD natural convection flow from an isothermal horizontal circular cylinder under consideration of temperature dependent viscosity T2 - Engineering Computations PB - Emerald Group Publishing Limited SP - 875 EP - 887 Y2 - 2024/04/19 ER -