TY - JOUR AB - Purpose– The purpose of this paper is to present a numerical simulation of the hydrogen atomic effect on the steels fracture toughness, as well as on crack propagation using fracture mechanics and continuous damage mechanics models.Design/methodology/approach– The simulation was performed in an idealized elastic specimen with an edge crack loaded in the tensile opening mode, in a plane strain state. In order to simulate the effect of hydrogen in the steel, the stress intensity factor ahead of the crack tip in the hydrogenated material was obtained. The damage model was applied to simulate the growth and crack propagation being considered only two damage components: a mechanical damage produced by a static load and a non‐mechanical damage produced by the hydrogen.Findings– The simulation results showed that the changes in the stress field at the crack tip and the reduction in the time of growth and crack propagation due to hydrogen effect occur. These results showed a good correlation and consistency with macroscopic observations, providing a better understanding of the hydrogen embrittlement phenomenon in steels.Originality/value– The paper attempts to link the concepts of the continuous damage and fracture mechanics to achieve a better approach in the representation of the physical phenomenon studied, in order to obtain a more accurate simulation of the processes involved. VL - 29 IS - 6 SN - 0264-4401 DO - 10.1108/02644401211246300 UR - https://doi.org/10.1108/02644401211246300 AU - Palma Carrasco Jorge AU - Andrade Barbosa José Maria AU - Almeida Silva Antonio AU - da Silva Irmão Marcos Antonio PY - 2012 Y1 - 2012/01/01 TI - Application of elastic fracture and damage mechanics models for numerical simulation of hydrogen embrittlement in steels T2 - Engineering Computations PB - Emerald Group Publishing Limited SP - 596 EP - 604 Y2 - 2024/04/25 ER -