Books and journals Case studies Expert Briefings Open Access
Advanced search

Simulation of fines migration using a non‐Newtonian lattice Boltzmann‐discrete element model: Part I: 2D implementation aspects

C.R. Leonardi (Civil and Computational Engineering Department, Swansea University, Swansea, UK)
D.R.J. Owen (Civil and Computational Engineering Department, Swansea University, Swansea, UK)
Y.T. Feng (Civil and Computational Engineering Department, Swansea University, Swansea, UK)

Engineering Computations

ISSN: 0264-4401

Publication date: 25 May 2012

Abstract

Purpose

–

The purpose of this paper is to present a novel computational framework capable of simulating the block cave phenomenon of fines migration in two dimensions. Fines migration is characterised by the faster movement of fine and often low‐grade material towards the draw point in comparison to larger, blocky material. A greater understanding of the kinematic behaviour of fines and ore within the cave during draw is integral to the solution of this problem.

Design/methodology/approach

–

The lattice Boltzmann method (LBM) is employed in a nonlinear form to represent the fines as a continuum, and it is coupled to the discrete element method (DEM) which is used to represent large blocks. The issues relevant to this approach, such as fluid‐solid interaction, the synchronisation of explicit schemes, and the characterisation of a bulk material as a non‐Newtonian fluid are discussed.

Findings

–

Results of the 2D simulations reveal migration trends for the geometries, material properties and operational sequences analysed. By executing an extensive programme of numerical experiments the influence of these and other relevant block cave factors on the migration of fines could be isolated.

Originality/value

–

To the authors' knowledge, this is the first time the LBM has been used to simulate the flow of bulk materials. The non‐Newtonian LBM‐DEM framework is also a novel approach to the investigation of fines migration, which until now has been limited to scale models, cellular automata or pure DEM simulations. The results of the 2D migration analyses highlight the potential for this novel approach to be applied in an industrial context and also encourage the extension of the framework to 3D.

Keywords

  • Mining
  • Soil mechanics
  • Simulation
  • Lattice Boltzmann method
  • Discrete element method
  • Block caving
  • Fines migration
  • Non‐Newtonian fluids
  • Soil rheometry

Citation

Leonardi, C.R., Owen, D.R.J. and Feng, Y.T. (2012), "Simulation of fines migration using a non‐Newtonian lattice Boltzmann‐discrete element model: Part I: 2D implementation aspects", Engineering Computations, Vol. 29 No. 4, pp. 366-391. https://doi.org/10.1108/02644401211227617

Download as .RIS

Publisher

:

Emerald Group Publishing Limited

Copyright © 2012, Emerald Group Publishing Limited

Please note you do not have access to teaching notes

You may be able to access teaching notes by logging in via Shibboleth, Open Athens or with your Emerald account.
Login
If you think you should have access to this content, click the button to contact our support team.
Contact us

To read the full version of this content please select one of the options below

You may be able to access this content by logging in via Shibboleth, Open Athens or with your Emerald account.
Login
To rent this content from Deepdyve, please click the button.
Rent from Deepdyve
If you think you should have access to this content, click the button to contact our support team.
Contact us
Emerald Publishing
  • Opens in new window
  • Opens in new window
  • Opens in new window
  • Opens in new window
© 2021 Emerald Publishing Limited

Services

  • Authors Opens in new window
  • Editors Opens in new window
  • Librarians Opens in new window
  • Researchers Opens in new window
  • Reviewers Opens in new window

About

  • About Emerald Opens in new window
  • Working for Emerald Opens in new window
  • Contact us Opens in new window
  • Publication sitemap

Policies and information

  • Privacy notice
  • Site policies
  • Modern Slavery Act Opens in new window
  • Chair of Trustees governance statement Opens in new window
  • COVID-19 policy Opens in new window
Manage cookies

We’re listening — tell us what you think

  • Something didn’t work…

    Report bugs here

  • All feedback is valuable

    Please share your general feedback

  • Member of Emerald Engage?

    You can join in the discussion by joining the community or logging in here.
    You can also find out more about Emerald Engage.

Join us on our journey

  • Platform update page

    Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

  • Questions & More Information

    Answers to the most commonly asked questions here