To read this content please select one of the options below:

Numerical simulation of the performance of a human nasal cavity

Francisco Castro (University of Valladolid, Valladolid, Spain)
Teresa Parra (Escuela de Ingenierias Industiales, Dpt. Ingenieria Energetica y Fluidomecanica, University of Valladolid, Valladolid, Spain)
César Quispe (University of Valladolid, Valladolid, Spain)
Pilar Castro (Hospital de Salnés, Pontevedra, Spain)

Engineering Computations

ISSN: 0264-4401

Article publication date: 23 August 2011




The paper aims to focus on airflow and heat transfer inside the human nasal cavity. The contribution of this work is the inertial analysis of the momentum and thermal stress of the cavity throughout the respiratory cycle.


By means of computer tomography scans, an accurate three‐dimensional anatomical representation of the human nasal cavity was obtained. A three‐dimensional numerical model is presented in order to predict the time evolution of flow patterns during a quiet breathing cycle, covering inhalation and exhalation. An inertial analysis of the momentum and a detailed study of the thermal behaviour during the breathing cycle is carried out.


Head loss, velocity and temperature values are in agreement with experimental results from previous studies. Based on these results, the influence of the inhalation and the exhalation on the flow pattern and air conditioning has been reviewed. Results suggest that the anterior and posterior turbinate regions are where the air conditioning is primarily produced.

Practical implications

The future goal is to investigate respiratory disorders to increase the effectiveness of the eventual treatment of the pathology. The model could be a useful tool to predict, for instance, the modification of the flow patterns due to septal perforations.


The transient resolution provides insight into the momentum and thermal inertia though the breathing which is far from being well understood.



Castro, F., Parra, T., Quispe, C. and Castro, P. (2011), "Numerical simulation of the performance of a human nasal cavity", Engineering Computations, Vol. 28 No. 6, pp. 638-653.



Emerald Group Publishing Limited

Copyright © 2011, Emerald Group Publishing Limited

Related articles