To read this content please select one of the options below:

Hybrid‐Trefftz finite element method for heat conduction in nonlinear functionally graded materials

Zhuo‐Jia Fu (Department of Engineering Mechanics, Hohai University, Nanjing, People's Republic of China)
Qing‐Hua Qin (School of Engineering, Australian National University, Canberra, Australia)
Wen Chen (Department of Engineering Mechanics, Hohai University, Nanjing, People's Republic of China)

Engineering Computations

ISSN: 0264-4401

Article publication date: 19 July 2011

334

Abstract

Purpose

The purpose of this paper is to develop a hybrid‐Trefftz (HT) finite element model (FEM) for simulating heat conduction in nonlinear functionally graded materials (FGMs) which can effectively handle continuously varying properties within an element.

Design/methodology/approach

In the proposed model, a T‐complete set of homogeneous solutions is first derived and used to represent the intra‐element temperature fields. As a result, the graded properties of the FGMs are naturally reflected by using the newly developed Trefftz functions (T‐complete functions in some literature) to model the intra‐element fields. The derivation of the Trefftz functions is carried out by means of the well‐known Kirchhoff transformation in conjunction with various variable transformations.

Findings

The study shows that, in contrast to the conventional FEM, the HT‐FEM is an accurate numerical scheme for FGMs in terms of the number of unknowns and is insensitive to mesh distortion. The method also performs very well in terms of numerical accuracy and can converge to the analytical solution when the number of elements is increased.

Originality/value

The value of this paper is twofold: a T‐complete set of homogeneous solutions for nonlinear FMGs has been derived and used to represent the intra‐element temperature; and the corresponding variational functional and the associated algorithm has been constructed.

Keywords

Citation

Fu, Z., Qin, Q. and Chen, W. (2011), "Hybrid‐Trefftz finite element method for heat conduction in nonlinear functionally graded materials", Engineering Computations, Vol. 28 No. 5, pp. 578-599. https://doi.org/10.1108/02644401111141028

Publisher

:

Emerald Group Publishing Limited

Copyright © 2011, Emerald Group Publishing Limited

Related articles