A discrete particle model and numerical modeling of the failure modes of granular materials

Xikui Li (The State key Laboratory for Structural Analysis of Industrial Equipment, Dalian University of Technology, Dalian, Republic of China)
Xihua Chu (The State key Laboratory for Structural Analysis of Industrial Equipment, Dalian University of Technology, Dalian, Republic of China)
Y.T. Feng (Civil & Computational Engineering Centre, School of Engineering, University of Wales Swansea, Swansea, UK)

Engineering Computations

ISSN: 0264-4401

Publication date: 1 December 2005

Abstract

Purpose

To present a discrete particle model for granular materials.

Design/methodology/approach

Starting with kinematical analysis of relative movements of two typical circular grains with different radii in contact, both the relative rolling and the relative sliding motion measurements at contact, including translational and angular velocities (displacements) are defined. Both the rolling and sliding friction tangential forces, and the rolling friction resistance moment, which are constitutively related to corresponding relative motion measurements defined, are formulated and integrated into the framework of dynamic model of the discrete element method.

Findings

Numerical results demonstrate that the importance of rolling friction resistance, including both rolling friction tangential force and rolling friction resistance moment, in correct simulations of physical behavior in particulate systems; and the capability of the proposed model in simulating the different types of failure modes, such as the landslide (shear bands), the compression cracking and the mud avalanching, in granular materials.

Research limitations/implications

Each grain in the particulate system under consideration is assumed to be rigid and circular. Do not account for the effects of plastic deformation at the contact points.

Practical implications

To model the failure phenomena of granular materials in geo‐mechanics and geo‐technical engineering problems; and to be a component model in a combined discrete‐continuum macroscopic approach or a two‐scale discrete‐continuum micro‐ macro‐scopic approach to granular media.

Originality/value

This paper develops a new discrete particle model to describe granular media in several branches of engineering such as soil mechanics, power technologies or sintering processes.

Keywords

Citation

Li, X., Chu, X. and Feng, Y. (2005), "A discrete particle model and numerical modeling of the failure modes of granular materials", Engineering Computations, Vol. 22 No. 8, pp. 894-920. https://doi.org/10.1108/02644400510626479

Download as .RIS

Publisher

:

Emerald Group Publishing Limited

Copyright © 2005, Emerald Group Publishing Limited

Please note you might not have access to this content

You may be able to access this content by login via Shibboleth, Open Athens or with your Emerald account.
If you would like to contact us about accessing this content, click the button and fill out the form.
To rent this content from Deepdyve, please click the button.