Emerald logo
Advanced search

A modular robotic system for industrial applications

Gabriella Acaccia (DIMEC – University of Genova, Genova, Italy)
Luca Bruzzone (DIMEC – University of Genova, Genova, Italy)
Roberto Razzoli (DIMEC – University of Genova, Genova, Italy)

Assembly Automation

ISSN: 0144-5154

Publication date: 18 April 2008

Abstract

Purpose

–

The aim of this paper is the development of a modular robotic system for generic industrial applications, including assembly.

Design/methodology/approach

–

A library of robotic modules has been designed; they are divided into two categories: link modules, not actuated, and joint modules, actuated; the library is characterized by a relatively low number of elements, but allows the assembly of a wide variety of medium‐size serial robots.

Findings

–

The prototypes of two joint modules (a revolute joint module and a wrist module) and of some link modules have been realized. The behaviour of several serial robots composed of the designed modules has been assessed by multibody simulation. The results confirm the goodness of the proposed approach.

Research limitations/implications

–

The two prototype modules are under test in combination with simplified modules. The further steps of the research programme will be the completion of the prototype library, and an experimental campaign on different serial chains.

Practical implications

–

Modularity allows one to achieve a great variety of robots starting from a small set of modules, in order to match different operative requirements. Moreover, modularity dramatically reduces the time‐to‐repair of the robot and consequently improves its overall availability; this is a fundamental feature for modern industrial enterprises aiming at maximizing the resources availability.

Originality/value

–

The proposed mechanical design of the revolute joint modules, based on a harmonic drive that connects two bodies in relative rotational motion, is compact and robust. Modularity is not restricted to mechanics: a distributed control system is adopted to make the reconfiguration of the robot easier and quicker.

Keywords

  • Assembly
  • Robotics
  • Production methods

Citation

Acaccia, G., Bruzzone, L. and Razzoli, R. (2008), "A modular robotic system for industrial applications", Assembly Automation, Vol. 28 No. 2, pp. 151-162. https://doi.org/10.1108/01445150810863734

Download as .RIS

Publisher

:

Emerald Group Publishing Limited

Copyright © 2008, Emerald Group Publishing Limited

Please note you might not have access to this content

You may be able to access this content by login via Shibboleth, Open Athens or with your Emerald account.
Login
To rent this content from Deepdyve, please click the button.
Rent from Deepdyve
If you would like to contact us about accessing this content, click the button and fill out the form.
Contact us
Emerald Publishing
  • Opens in new window
  • Opens in new window
  • Opens in new window
  • Opens in new window
© 2019 Emerald Publishing Limited

Services

  • Authors Opens in new window
  • Editors Opens in new window
  • Librarians Opens in new window
  • Researchers Opens in new window
  • Reviewers Opens in new window

About

  • About Emerald Opens in new window
  • Working for Emerald Opens in new window
  • Contact us Opens in new window
  • Publication Sitemap

Policies and information

  • Legal Opens in new window
  • Editorial policy Opens in new window & originality guidelines Opens in new window
  • Site policies
  • Modern Slavery Act Opens in new window

We’re listening — tell us what you think

  • Something didn’t work…

    Report bugs here

  • All feedback is valuable

    Please share your general feedback

  • Member of Emerald’s Library Advisory Network?

    You can start or join in a discussion here.
    If you’d like to know more about The Network, please email us

Join us on our journey

  • Platform update page

    Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

  • Frequently Asked Questions

    Your questions answered here