TY - JOUR AB - Purpose– The goal of this research is to demonstrate micro‐electro‐mechanical systems (MEMS)‐based transducers for aircraft maneuvering. Research in wind tunnels have shown that micro‐actuators can be used to manipulate leading edge vortices found on aerodynamic surfaces with moderate to highly swept leading edges, such as a delta wing. This has been labeled as the MEMS vortex shift control (MEMS‐VSC). The work presented in this paper seeks to detail the evolution of real‐world flight tests of this research using remotely piloted vehicles (RPVs).Design/methodology/approach– Four different RPVs were constructed and used for flight tests to demonstrate the ability of using MEMS devices to provide flight control, primarily in the rolling axis.Findings– MEMS devices for high angle‐of‐attack (AOA) turning flights have been demonstrated and the paper finds that the success of a complex project like the MEMS‐VSC requires the marriage of basic science expertise found in academia and the technical expertise found in industry.Research limitations/implications– Owing to the need to test fly the RPVs at low altitudes for video documentation while performing high AOA maneuvers, the attrition of the RPVs becomes the dominant factor to the pace of research.Practical implications– MEMS sensors and actuators can be used to augment flight control at high AOA, where conventional control surfaces typically experiences reduced effectiveness. Separately, the lessons learned from the integration efforts of this research provide a potentially near parallel case study to the development of ornithopter‐based micro aerial vehicles.Originality/value– This is the only research‐to‐date involving the demonstration of the MEMS‐VSC on real‐world flight vehicles. VL - 83 IS - 5 SN - 0002-2667 DO - 10.1108/00022661111159933 UR - https://doi.org/10.1108/00022661111159933 AU - Lee John AU - Newbern Scott AU - Tai Yu‐Chong AU - Ho Chih‐Ming AU - Adam Huang Po‐Hao PY - 2011 Y1 - 2011/01/01 TI - Flight demonstrations of micro‐actuator controlled delta wing T2 - Aircraft Engineering and Aerospace Technology PB - Emerald Group Publishing Limited SP - 324 EP - 331 Y2 - 2024/04/26 ER -