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Abstract

In the paper we extend some Hardy and Littlewood type inequalities on time scales for the function of »
variables. Special cases of obtained results include generalized Wirtinger, Hardy and Littlewood type
inequalities.
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1. Introduction

The discrete Hardy inequality [8] was proved and published by Hardy himself. It states that if
(¢cn) is a sequence of non-negative real numbers which are not identically zero, then for every
real number p > 1, one has that

0 P o
S < () S

k=1

The classical Hardy inequality [9] states that if / >0 and integrable over any finite interval
(0,7) and ¢ is integrable and convergent over (0, oo) then for d > 1,

/0 ) G /0 ' f(T)dT> "< (%)d /0 " Fryr, M
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equality holds if and only if f(») = 0 almost everywhere. Hardy inequality (1) has been
generalized by Hardy himself in [11], where he exposed that, for any integrable function
f(¥) >0on (0,0)and d > 1, the following hold

oo 0 d d .
/o yé(/ f(h)dh) &y < <1fn) /0 y,id )y, n<l, ©
*1 Y d d d ® q )
/o 37(/0 f(h)dh> dy < (m) /o i fydy, n>1 3)

Hardy and Littlewood [10] demonstrate the discrete versions of (2) and (3). In particular they
proved that if d > 1and (p,,) is a sequence of non-negative terms then

d
z%(zpi) B

m=1 i=m m=1
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m=1
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where N is a non-negative constant. Time scales calculus [12] was introduced in 1988 by the
German mathematician Stefan Hilger, which unifies sums and integrals. Some extension of
Hardy type inequalities on time scales can be found in [2—4].

S.H. Saker et al.[13] proved some Hardy and Littlewood type inequalities on time scales in
the following form:
Theorem 1.1. Let T be a time scale with a € (0, 00)y and p,q > 0 such that p/q>2 and

y > 1 Furthermore assume that g is a nonnegative and the delta integral |, a°° f gl/4(t)At
exists. Let

A(t) = /tg(s)As, for any te€la, ;. @)

Then one gets
=1 2k [ [ i
—(A°(t)) At < ——— —g""(t)At
/a P _61(7/—1){ , e 0 }
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Theorem 1.2. Let T be a time scale with a€(0,00); and p,q > 0 such that p/q>2
and y > 1. Furthermore assume that g is a nonnegative function and the delta integral

[ ts_ng/ 9(t)At exist. Let A(t) be as defined in (4). Then



ool , ol 2§—lpky /0 poo 1 2/
/d SA°(t) Ats(q(y_l) / AL

Theorem 1.3. Let T be a time scale with a € (0, 00)y and p,q > 0 such that p/q > 1 and
y > 1 Furthermore assume that g is a nonnegative function and the delta integral

L (77 g/9 (1) At exists. Let A(t) be as defined in (4). Then

-ool . ol pky b/ poo 1 5/
/a L) Ats(q(y_l) / @A

Theorem 1.4. Let T be a time scale with a € (0, 00)y and p,q > 0 such that p/q > 1 and

v < 1 Furthermore assume that g is a nonnegative and delta integral |[;° (6(t) )5_7 gPa(t)At
exists. Let

Q) = /twg(s)As, for any te€a, ol;.

) b/a /4 oo bl
[ (e Yy,
« ot al=7)) Jo (o))
In this paper we extend results of Theorem 1.1 to Theorem 1.4 for the function of #
variables.

Then one gets

2. Preliminaries

In this section, we recall the following concepts from theory of time scales [5,7]. A time scale is
an arbitrary, non empty closed subset of real numbers. Set of integers and Cantor set are
examples of time scales, while rational numbers, complex numbers and open interval
between 0 and 1 not time scales. Let T be a time scale, for € T, forward and backward jump
operators are defined by

o(t) :=mf{aeT; a>t}, p(t):=sup{aeT; a<t},

respectively. The conventions for these operators are inf ¢ = supT and sup ¢ = infT.
Ifo(t) > ¢ then tisright-scattered and if p(¢) < ¢, then ¢is left-scattered. Points that are right-
scattered and left-scattered at the same time are called isolated points.

If 6(¢) = ¢, then ¢ is right-dense and if p(#) = ¢, then ¢ is left-dense. Points that are right-
dense and left-dense at the same time are called dense points. The functions
u: T—>R,v: T —Rdefined by u(t) = 6(¢) — ¢ and v(t) = ¢t — p(¢) are called forward and
backward graininess functions, respectively.

A function g : T — R is said to be right-dense continuous (rd-continuous) provided g is
continuous at right-dense points and at left-dense points in T, left-hand limits exist and are
finite. The set of all such rd-continuous functions is denoted by C,;(T). For any function
g : T — R, the notation g°(#) denotes g(a(t)). The delta derivative (also Hilger derivative)
g4 (1) exists if and only if for every € > 0 there exists a neighborhood U of ¢ such that

|g(a(t)) — g(s) —g*(H)(a(t) —s)| < |o(t) —s|, foralls, tin U.
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Assume that 2 : T — R, if HA(¢) = h(f), then the Cauchy (delta) integral of 4. defined by

/ "h(s)As = H(t) — H(a).

Integration by parts formula [7, Theorem1.77]:
Ifa,be T and u,v e Cy(T), then

b b
/ (B (DAt = [u(o(d)]! - / WA (B (DAL ©)

Chain rule 1 [7, Theorem 1.90]:
Assume that f : R — R is continuously differentiable and suppose g : T — R is delta
differentiable. Then f og : T — R is delta differentiable and

(F 08) (1) = {/f ) + ) fmm@ym ©

holds.

Chain rule 2 [7, Theorem 1.87]:

If £ and g satisfy the conditions of Chain rule 1, Then f og : T — R is delta differentiable
and there exists ¢ in the real interval [£, 6(¢)] such that

(fog)*(t) = f (g(c)g* (D). Y

Holder’s inequality [7, Theorem 6.13]:
For continuous real-valued functions g: T—>R, 2: T—->R, let ¢,b€T, p>1 and

%—0— % =1, then
/abg(t)h(t)dtz (/abgp(t)dty/p(/j/ﬂ(t)dt)l/q. ®)

Fubini’s Theorem on time scales [6]:

Let (w, M, u,) and (I, N, As) be two finite dimensional time scales measure spaces. If
A:wXT>Risap, X 7\4 1ntegrab1e function. The function ¢(#2) = f A(h, l)Ah exists for
any i €land &(h) = [ A(t, t2)Als exists for €, then

/Ah/ (h,b)At, = /Atg/ (h,)Ah. )

We assume throughout that all the functions are non-negative and the integrals
considered exist.

In this paper, we use the following notations. We assume that there exists constant &, > 0
with

S l for s >a;, i€{l,...,n}. (10)

AZI“'”J(th ) i/\zl""’f = Ap(o1(tr), ..., 0i(t), tisr, .. 1), Ryje{L, ... ,n}

/ f(tl,...,tn)Atl,...,Atni/H,l Flt, ..t HAt
%



3. Hardy and Littlewood-type inequalities for p/g > 2 and y > 1 Inequalities of

The following inequalities are used to prove next results. multivariate
A+ <(a+b) <27 +b) for a,b>0,A>1. an ngdy and

P + 1) < (a+b) <d+5 for a,b>0,0<h<1. 12 Littlewood
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Theorem 3.1. Assumeie€{l,...,n},T;isatimescalewitha; € (0,00)y andy; > 1, further
assume g : [ay, 00) g X -+ - X [ay, ) 1, = Ry 1s such that the delta integrals

- o .

an o T () ighli(ty, ... L)AL for any (..., t,) €lar, 00) X -+ X [a, 00) exist,
=1

define

0 k
Ak(tl,...Jn):/ o &lsus) [[As, kefl,.. . n, (13)
H];la] =1

then for p,q > Oand p/q>2
Ao'] op p/q n
At
/H N H t“ 1}
< 1o fip 1l

r=1 j=r+l

(ﬁ 1)
ﬂ] /- /
71
4G j=r+1 ] H allltl

0 (Aalvllla,,l )p/l] a/p p/ p—g 7=1 n
7— 01...0y 01...0y q P X
/TMTM{W>WIAfH 11
ay 7

=1 J=r+1

J=r+1

(14)

n (p/q-1) n
H ﬂz H
+ Ci /ﬁ l‘y’ gp/q(tla ) tﬂ) l Atz
4 4=1 =1

/a2y
Yr-1

holds, where ¢, = ¢, p/q, ¢, =

Proof. To prove the result, we use the principle of mathematical induction. For # = 1 the
statement is true by Theorem 1.1. Let the statement be true for 1 <n <k

To prove the result for # = % + 1. The left-hand side of (14) can be written as,
k+1

/Hk“ A T 09
=1 H1 1 t
oo (A‘;Ll%l)p/q a 1
Denote f - Al = L Apply () with 22— u(tp1) = Wand
k 1 k+1
() = (AT by Keeping Fx (1. ) € o X ¥l ),

1SS [M(l‘kﬂ)((/‘;i{gk)p/q)] ‘Zu / _”(tk+1) (Aﬂlvk)p/qu“’ (16)
p+1
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26,1/2 u(le1) /fm 7 it a7

Use chain rule (6) and the fact that 6,1 (Sg11) > Sk to get

d 1 1 _
( - s) = (Y1 — 1) / 101 (Sk1) + (1= Dg1)Spa ] g
0

Ask+1 Vi1~
250 [ s
> M
B 02,:11 (Sks1)
(10) together with (18) gives
9 1\, (a—1
s \ st T RS
Therefore
© 1
_TﬂAskH
1 Skt
4 y 19
© k+1 k1
> / By o VI k] Y
har  TEH1 T 14s,1 32’3:11 Vo1 — 1 t}z:f
(17) together with (19) gives
Tl R (1
)= _/ A < =3t 20)
( +1) - S}Cill +1 Yot 1 t}:ﬁ:ll 0
From (13), (16), (17), (20), we have (note that u;1(c0) = Oand Ags1(f, - - ., e, rs1) = 0)
k}’k+1 0 1 a
I, = k+1 / (A0 p/th . (21)
o Vi1 — 1 Japs t}:l:rll—l Al ) k1

Apply chain rule 1 (6) on the right-hand side of (21)

d (A )p/q

AlLk+1 k+1
(22)
p 9 ! ] t
_P A1 A Ao .
g Ay /0 { 1+ Ty (Ben) Al e Al
Use right part of (11) on the right-hand side of (22),
d
ALk p/q
Atk+1( k+1 )
D opro—s; yoroppla-1 O 616
< 5217/4 2Ap Aoy (™) 23)

9 p/a

A0
At]H,l k+1 )

D op/a- .
2t ()Y




Substitute (23) into (21)

pgﬁ/q—zkzm © 1 - 9
.., < +1 / (A1 0% p/q A% A
RS qVe1 — 1) Jo. | H" T(Ap™) Ay, L T
(24)
P2 / * 1 pat, 0 pg MO
+ —(Hpr (L))" (57— ARY™) Al
(1 — 1) Gt t}};’j:ll I\ R Aty k+1 +
Since
g g 50 (25)
Atk+1 k+1 k 2 U.
Use (25) in (24)
pzﬁ/q—Zk;/Hll © 1 e
Ik 1< + / (A% ”k) q A% o'kAtk .
’ q<7k+1 - 1) Q1 l‘,t}_fll RN k +
(26)
j)21’/q Zkﬁ:ll /oo 1 e
+ (g (Be) ) (AT ) Al
qpa — 1) o tzﬁﬁl 7M1 et ’ "
Substitute (26) in (15)

k41

A0 0}’+1 pla
/H”] Lt N IEL
Hz 17

1 2p /q—2 kwm © 1 - :
b / (A1 )17/‘1 1A‘kyl“ﬁk H Atk+1Atz (27)
At =

/H H (4 = 1) S, 8 11k

k+1

1 /a4~ zkm 1 o ¢ p/q-1 k
p (M}Z+1( k+1)) (Azr”(fk)ﬁ/q HAtk+1Ati-

/H a,H 4 (V1 — 1) G e -

Exchange integrals on right-hand side of (27) k -times by using (9)

p2p/q 2k7h+l o0 s i
a / o / A A HM Alin
A1 H a; H 1 l

4V —

k+1 =1
PR e [
- Hir (b)) / - 28
Q(7k+1 1)( k+1(k+1)) - t}z}:&l 1 ( )

o0 1 o k
></ o (A7 T Aty
. : =1

Use the induction hypothesis with A7""* in (28) for fixed f;,1 € Tj41 and again apply (9)
k-times to get
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ZH%/H, Hﬂf >

r=1 j=r+l 1]]¢+1

/oo {/oo (A”l'l"gr—l)ﬁ/q }q/p
~r=2 7 At
i - r
H aj =1 tt ar ﬁy il
p—q =1

(=) Tan T a

=1 j=r+1

R ) oo
) | o

Hence

) /\”l on\0/4 k1
Uil y ¥

/Hf”f TR
1kl y o k+1 /t] (ﬁ/q 1) roo r—1 1
<> T e /HM ],] /H Nt e

r=1 j=r+1 i1 4G j=r+1

0 (Azr -0,_1 )P/q a/b p=q r=1 k1
/ AL (A7 (A AL T HAt IT 44

ar l‘/ = j=r+1

k+1 k+1 k41

t;
+H6l/ - %gpm(fl:--wt}zﬂ)nAtﬁ
H a4 i 1 t i1

Hence by induction principle, the statement is true VzZeN. [

Theorem 3.2. Assume i€{1,...,n}, T;is a time scale with a; € (0, 00)y and y; > 1,
Surther assume g : [ay, 00)¢, X - -+ X [ay, 00)¢ — Ry is such that the delta mtegmls sz

H?:l(tl-)g_”gp/q(tl, o) [Ty Aty exist. Let Ayt . . ., 1) be defined in (13), then for p,q > 0
andp/q>2

/H “ H t”

np

P\ T 2rlk n
S<5> H( ) /H aliltn—p/q gt tn)HAtz,

Am Op P/q HAt

(29)

holds.



Proof. To prove the result, we use the principle of mathematical induction. For #z = 1 the
statement is true by Theorem 1.2. Let the statement be true for 1 <n <k

To prove the result for # = % + 1. Proceed it as in the proof of Theorem 3.1 up to (21). Apply
chain rule 1 (6) on the right-hand side of (21) yields

ad
ACL Ok p/q
Atk+1( k+1 )
p 9 010 ' 010ky1 010 b1 (30)
~\¢/ 2, lAk+1 AT+ (U= he)AZS T dla.
+ 0
Use (11) on the right-hand side of (30),
b D 9 2 010piq\E-1 d 610 b 2_9 1 10105\ L1 d 010}
S(;) 205 (AT AtkHAkil b+ 6 2 (AT At—kHAki] "
use the fact 67,41 (tp11) > t1
p L_2, 010 21 d 01--0) p L2/ 1010y by d 610},
= (5)2{1 (A7) Al‘kHAkl“ b 7 2 (A )T At—}mAkil !
31
D\ i1, yo1opq 21 d P
= (5) 2 (ALY Ao A
Since
9 010} 010},
AtkHAk“ =A]"">0. (32)
Use (32) in (31) and substitute in (21) to get
b
P2 AN oD WY T
L1 < + / — (A7} /Hl)" AV Alp.q. (33)
+ 6](7;3+1 _ 1) . t/}::ll 1T\ k41 k +
Apply Holder’s inequality on the right-hand side of (33) with indices p/g and p/(p — q)
a/p
A Yt (59 P
1)2” lka 1 ) q - =g
I}Hl Smk:rll) /k 1 l;/gglu—l Akl ' At/”l X {I/Hl} .
et +1
After simplification, we get
» 0/q
pZZI—lkﬂ‘ﬂ 0 (AO1k p/q
L1 < 7“11 / (k_T)AtkH- (34)
41 — 1) Q1 tkilykﬂ
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26’1/2 OOk N bla ﬁAl‘

hr
/ 1 ( P2 )m /°° (ary
254 L oL\ =D Jay g
Exchange integrals on right-hand side of (35) % -times by using (9)

b/a
p2§*1k/yg}$1l > / {/ 0'1 -0} [7/q }
’ At; p Aty (36)
<Q(}’k+1 N 1) Qe ll‘ q+7k+] II: 4 | | 1t77 H ’

Use the induction hypothesis for A} in (36) for fixed ;41 € T;1 and again apply (9) ktimes
to get

(35)

k+1
/ OOk P/q HAZL
H:”ll Hk+1 k+1

zll

» L h+1 o1 % 1”+1 k
< <5) vi— 1 /Hk lal 1 tyl_p/q (tla RN tk+1) EAZLZ

Hence by induction principle, the statement is true V. zeN. [J

Corollary 3.3. As a special case of Theorem 32, when Ty =--- =T, =R, p/g=r>1
and y; < 1, (29) becomes the following Wirtinger type inequality

/ﬁ H t” Gt ... 1, AHdt

=11

H(m 1) / ( 671 Gt t))f[dt.
11 17}/1 H alH ty’_}\ (91‘1 1yeveslp 11 (2]

where G(ty, .. ., t,) iflt’—[;f (s, 80) [T dsi

When yy ==y, = )» > 1, we have another Hardy type inequality for function of
n-variables
r 00 1 t; n A n
/ Y T(/ . g(sl,...,sn)Hdsi> Hdti
Hizlai Hz’:lti Hl:ldi i1 i1
L n

)\21—1
< (7» — 1) g}\(l‘h ey tn) Hdtl

=1



Remark 3.4. Assume that T; =--- =T, =N in Theorem 32, p/g =A>1, a; > ],
y; > lforie{1,...,n}, furtherassumethat 3 ... 5> _ g*(mi,...,m,)is convergent.
(29) becomes the following discrete Hardy and Littlewood inequality

m my »
ml yn Z Zg kla--- n
1 o k=1

=

[=S)

Ms

mp=1 my

n 2}\71% A o0 ) 1 N
AEYE £plen o
=1 ?

7
my =1 my=1 i=1mi

4. Hardy and Littlewood-type inequalities for p/g > 1 and y > 1

Theorem 4.1. Assume i€{1,...,n}, T;is a time scale with a; € (0,00)y. and y; <1,
fun‘her assume g : [a1, 00)y, X - X[ay,00)y — Ry is such that the delta mtegmls fH

I ¢ ”’gp/q(tl, oo )Ty At exist. Let Ay(ty, . . ., 1) be defined in (13), then for p, ¢ > 0
andp/q >1

Aol -0y 17/(1 HAt

/H H 11 =1
p ﬂ n k}/, bla n

holds, where nis a positive integer.

37)

Proof. To prove the result, we use the principle of mathematical induction. For n =1
the statement is true by Theorem 1.3. Let the statement be true for 1 <n <*k.

To prove the result for # = % + 1. Proceed it as in the proof of Theorem 3.1 up to (21).
Apply the chain rule 2 (7) to get

d 610 \D j) 610, by d 10
—— (A7 = ST Bt )T AT

Aty Al
where ;11 € [tr11, 6541 (t11)]. Since
ad
—— AP =ATT >0,
AlL}H,l k+1
and o6y.41(f,41) > cp11, one has that
d 610 b 010y -—1 0]
Atk+1Ak-1H '< 5(Ak 1 ‘ 1) Akl . (38)
Substitute (38) into (21)
. o [ 40101\ 21
Ly <—2t Kl (™" AT AL (39)
k+1 _q(}/k ) t7ﬁ+1 1 & k+1-
+1 ap1 T+l
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Apply Holder’s inequality on the right-hand side of (39) with mdlces p /qand p/(p—q)

_ b/a a/p
pk7k+l © tVHl (I%) g
Ly S —H— / FEL_ AT R Aty g X T} 7
Qe =D | Jo, | 85
After simplification, we get
pk;}irll p/a 0 (A}T.,...,Uk)l’/q
[k+] < b Atk-H .
q(7k+1 - ].) A t_j:l*’y/wl

Substitute (40) into (15)

k+1
A% O'k+l p/a

/HM T Apia HAL‘
i=1 Hl =1 i
S bt b/ o0 61,...0p\P/q
Cfn (LY ety
Hi:lai Hf:1 tlyl q Vi1 — 1) 1 t}:i:fT

Exchange integrals on right-hand side of (41) % -times by using (9)

P\ v
+ AJET L AL S Al
( (Vi — 1)) /am A i /H a H H :

(40)

(41)

42)

Use the induction hypothesis with (A7""* )» /4in (42) for fixed tp41 € Tpi1 and again apply (9)

k-times to get

. ktl

Al 0'k+1 24

/Hk“ k+1 Apia HM
i=1 Hl 1 1

P\ EP g kr, b/q k+1 b+l
<l|= + — g l‘1, .. fk 1 At;.
(61) (n - 1> /Hﬁ PR f’/‘f i H

a4 =

Hence by induction principle, the statement is true V. zeN. [

Corollary 4.2. As a special case of Theorem 4.1, when Ty =--- =T, =R, p/g=1>1

and yy,...,v, <1, 37) becomes the following Wirtinger type inequality,




When y1 ="+ =¥, =A>1 we have the classical Hardy type inequality for function of

n -variables
© 1 /fi n Aoy
/ no o Jrn n g(Sh s 7311) Hdsi> Hdtl
Hizldf Hi:lti < H,-Ji i=1 i—1
s(%) (h,-. by Hdt

Corollary 4.3. Assume that T, = =T, =N Theorem 4.1, p/g=1>1, a; > ],
v, >1 for ie{l,...,n}, fwz‘her assume that Zml Yo 1 & my, . my) ds
convergent. Note that in this case m?’:;” m’"jd therefore § < - 7 < 1, and we get following
discrete Hardy and Littlewood inequality

7 7 R
m=1 my=1 mll o My k=1 k=1
n 2}\}\’ A oo
I 3 e o),
i=1 4 mp=1 my=1 i—1 1
Remark 4.4. Assume i€{1,...,n}, T; is a time scale with a; € (0, 00), and y; <1,

further assume g : [a1,00)y X - Xay,00); — Ry is such that the delta integrals

X Lri-1)
Ry o Ty o) (S2) g4t .. )[TE, At extist. Let Ay(h, ..., ) be defined
=1 t
in Theorem 3.1, then for p,q > Oand p/q > 1

oo (Aul op f)/q n
n t;
/H”“‘ Hi 1(0‘0‘Z H
np »
1_) T P/q/ gp/q t1,~-~ If) n (@‘(E))am 1) n |
<@ UGS s mes) e
holds.

Proof. Replace left-hand side of (37) in Theorem 4.1 by

o Ao'l"'o'n D/q n
RO s

/Hjlai H%:l(gi(ti))rl i=1
and proceed as in the proof of Theorem 4.1.  [J

5. Hardy and Littlewood-type inequalities for p/g < 2 and y > 1
Theorem 5.1. Assume i€{1,...,n}, T;is a time scale with a; € (0, 00)y, and y; <1,
Jurther assume g : a1, 00)¢ X -+ Xay,00); =Ry is such that the delta integrals
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fﬁfj “ Hfjl(tl-)g_”gp/q(tl, oo ty) T, Aty exist. Let Ap(t, . . ., 1) be defined in (13), then for
b, ql7> Oandp/q<2

/H i H 21 -0 D/qHAt
' i= ll
% n i\ P/
O TG f e o

111

43)

Proof. Proceed as in the proof of Theorem 3.2 and apply inequality (12) in (21) to get (43). O

Remark 5.2. As a special case of Theorem 5.1, when Ty =--- =T, =R, p/g =1 >1
and yy,...,7, < 1, we have the following Hardy type inequality

/H a,H fy’(/H 4 sl""’s”)ﬁdsi>kﬁdl‘i
<l” (1—71) /H azH t“‘* Gty .t Hdt

Remark 5.3. Assume that T; = =T, =N in Theorem 51, p/g=A>1, a; > 1,
y;i >1 for ie{l,...,n}, further assume that 7% - Z;Z]:lgh(ml, co M) 1S
convergent. In this case, (43) becomes the following discrete Hardy and Littlewood inequality

k=1 kn=

1

2\ & )
S' (7;‘*1) Z'”Zﬁg(m1,...,mn)_

(o)
my=1 muy=1 i:lmi

6. Hardy and Littlewood-type inequalities for p/g>1andy <1

Theorem 6.1. Assume i€{1,...,n},T; is a time scale with a; € (0,00)y and y; <1,
further assume g :[a1,00)p X - X[ay,00)y =Ry is such that the delta integrals

an 1% (a3l ))"”gl’/q(tl,...,tn) [T, AL exist, for any (4, . .., 1) € [a1, 00) ¢ X -+ X
[@n, °°)1T7 , define

f

.Qk(tl,‘..,tﬂ)—/l_[k 251, 0 HAS], re{l,....n) ()
lea]

then for p,q > 0and p/q > 1



/ .Qf’/q tl,.. @t ) 1
At;
M Lo

.0 7)) ia

l

(p)?p i < )P/q/ o ﬁ
<\= — gy, ] Ak
o) 13 \1=r) J[ &L (et " i1

holds, where nis any positive integer.

Proof. To prove the result, we use the principle of mathematical induction. For #z = 1 the
statement is true by Theorem 1.4. Let the statement be true for 1 <n <k

To prove the result for n = 2 + 1. The left-hand side of (45) can be written as

k+1

k Gt )
/H T BiETR [[at (46)
z 1 0; \l

1=1

/4
Denote f MA@+1 = [k+1 Apply (5) Wlth (fk+1) = yk+1

ey /k+1 (l‘ o (l‘ +1)

Q',;Ql(tl,... ) Thus
Loy = 0(te) 24 (8, tk+1)|a, .

and u(tp11) =

o 47
+/ V" (feg1 ) (— a Qiﬁ(fh---,tkﬂ))ﬂkm
Apt1

where v(tp,1) = fZE 1/ a,?ﬁﬁ (Sp+1)Asky1. Use chain rule (6) and the fact that 6,1 (Sp11) > Skt
to get

1
— (S;:yf“) =1 =7p1) / 1001 (Se1) + (1= Tgs1)Sesa] ™ dlya
0

2 (1= ve1) me
H 62?1] (Se41)’

which gives

0 (fy) = /0» ) 1 Asp < 1 (01 (fe1)) 71 48)
o - 031 (k1) - Vi) e .
Combine (47), (48) and use the facts 2,1(t41, - .., t, ) = 0, v(ar11) = 0to get
S Q. b))
L < 1 / S 2 1—1+ Al 49
(1- 7k+1) apy1 (O (ts1))™

Apply chain rule 2 (7) to find

/ _ _(P\ J
Atk —— () = — (CI)Q;HIUI’--~7tkack+1)At7k+1~Qk+l(th--~>tk+1)7

where, ¢;11 € [tp11, Ok i1 (te1)]- Since
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9 ) k
—Qa(h, ) = —/ v &Sty Shyte) HASz'
Atk+1 H':lai =1

igk(tla ERER tk+1) < 07
and ¢, 1 >t 1, one has that

3 d
Alp

21
‘Qi{rql(tla RN t/H»l) SAgQ;IeJrl(tl? RN Z‘lﬁ»l) Qk (tlv (RN tk+1)' (50)

Substitute (50) into (49)

Qo (.t
b / il ) Oty ). (61)
a,.

L < -
i ( 41 (‘7}e+1(t}e+1))yk+1 !

q(1—741)

Apply Holder’s inequality on the right-hand side of (51) with indices p/q and p/(p —¢q) to
obtain

p=q

Y ( Vh+1 (t ))T »/a afp
L < ( b [/ [( 25 RAARTAAN -Qk(tla--~atk+l):| Atk+1:|
ki1

q(1 = 7p41) Opr (teg) )

=

X 1] ?
After simplification, we get
pla © QP/‘I bt
L < (%) / ff(l—fl) Al (52)
A1 =761))  Jaes (Gpya () T8
Substitute (52) into (46)

/ k+1 th . tk+1 HAt
1‘["+1 k+1

1
zlll

©3)
/ ( b )"/q/ &t o) ﬁ AL
H a; H 1- 7k+1) Qi1 (6k+1 (t}e+1 ) 4+V*+1 i1
Exchange integrals on right-hand side of (53) ~-times by using (9)
< p )p/q /oo 1
B Q(]- - 7k+1) ) (Gk+1 (t}z+1))_§+7’?+1
(64)

(t,...\ b
{ / : —1 A HAt }At;m
Lo [[erw =



Use the induction hypothesis for £2,(t1, ..., #.1) in (54) instead for Q (4, . .., ) for fixed
tp41 € Ty, 1 and again apply (9) % times to get

k+1
I3 1(t17 sy t/H»l)
/H’“ S A
=1

| I A
o

k+1 b/q k+1 1 k41
+ 7§ (b5 ty1) | | AL
(1 _71> /H) 1[11 11 (L‘ y, -p/q + H

Hence by induction principle, the statement is true Vz € N. [

+1p

Corollary 6.2. Under the conditions of Theorem 6.1, we get the following inequality

» 00 1 n
n e RN ‘Qﬂ o1 (t yee+y0pn tn P/ Atl
1T U;Z(ti)( (01(1) )" 11
i=1 =1
(55)
f) % n bla o n
= q )
< (q> (1 — }/l> /H G i 1 V,—[)/qg (tla S ,tn) EAZLZ
Proof. The fact 6 £ <0 implies
/H H 2,(01(8)..0x(8)))" T a
.01 i1
1 (56)

(@u(tr, ..., t))" T] At

T

< -
HH“" Hz’:laln (%)
Now use (45) in (56) to get (55). [

Remark 6.3. Consider Ty =---=T,=R,p/g=A>1landy,,...,7, <1, in Theorem
6.1. Denote G(fy, ..., t,) = fﬁn 881, ,8n) [T, ds;. Thus, (45) takes the form
i=1"

/ (GMty, ... 1, Hdt
H a’Hill

<11 )k/w 1 Tttt [
> PEE— n N _ T \lly--enin 1y
1G5) a6

which can be considered as a generalization of Wirtinger’s inequality [1].

Remark 6.4. As a special case of Theorem 6.1, assume that Ty =---=T, =N,
pla=r>lay=---=a,=1landy,,...,y, <1 In this case (55) becomes the following
discrete Hardy and Littlewood inequality
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7. Hardy and Littlewood-type inequalities for p/g < 2andy <1

Theorem 7.1. Assume i€{1,...,n},T; is a time scale with a; € (0,00)y, and y; <1,
further assume g :[a1,00)p X - X [ay, 00)y =Ry is such that the delta integrals

an [T, (o) )'_ylgf’/q(tl, <o t) [T, At; exist, then for p,q > 0and p/q <2 Then

/H . Hn ) </H sl,...,sn)ﬁAsi)p/qﬁMi

() TGS fp Mg Tl
<\= / 7_g Uty t) | | AL
q 1—y, H " l 7, b/q P}

Proof: Use (12) and proceed as in the proof of Theorem 6.1 to get (57). O

Remark 7.2. In Theorem 7.1, when T =--- =T, =R, p/g=A>1and y; <1, B7)
becomes the following Wirtinger type inequality,

/H %H,lll sesly) Hdt

(57)

IA

3" )
S Ot t)) [ db

(1 - 71> /H p H /’_k\atl 7 i=1

where G(f1, ..., t,) = f1°—°[ p g(s1y. .y [T, dsi

Remark 7.3. In Theorem 7.1, assume that Ty =---=T,=N, p/g=1>1,
a =---=a,=1and y; <1 (57) becomes the following discrete Hardy and Littlewood
inequality

iinl)ﬁi S gl ok )k

mp=1 my=1 i 1(7”1 + ]- =m;+1 Fy=my+1
n 2 A o ) 1
< _> Sy e Y o m),
> — vi—h 3 s My
=1 1 Vi mp=1 my=1 Hi:l (mz + 1) !
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