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Abstract

Let H be a connected subgraph of a connected graph G. The H-structure connectivity of the graph G, denoted
by «(G; H), is the minimum cardinality of a minimal set of subgraphs F* = {H],Hj, ..., H,,} in G, such that
every H'; € Fisisomorphic to H and removal of F from G will disconnect G. The H-substructure connectivity
of the graph G, denoted by «°(G;H), is the minimum cardinality of a minimal set of subgraphs
F={/1.J5,....J,,} in G, such that every J/ € F is a connected subgraph of H and removal of F from G

Wm
will disconnect G. In this paper, we provide the H-structure and the H-substructure connectivity of the

circulant graph Cir(n, ) where Q = {1,... ,k,n—k,...,n—1},1 < k < |%] and the hypercube @), for some
connected subgraphs H.
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1. Introduction

A simple graph G = (V, E) is a finite nonempty set V(G) of objects called vertices together
with a (possibly empty) set £(G) of unordered pairs of distinct vertices of G called edges. Two
distinct vertices #,v € V(G) are said to be adjacent in G if # and v are connected by an edge
and it is represented by {u,v} € E(G). A graph G'is said to be trivial if it contains only one
vertex and no edges. The connectivity is an important indicator of the reliability and fault
tolerability of a network. The vertex connectivity of a connected graph G, denoted by «(G), is
the minimum cardinality of a vertex subset S C V(G), whose removal would disconnect G or
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G\ Sis the trivial graph. As a generalization of the vertex connectivity x(G), Cheng-Kuan Lin
et al. [6] introduced two new kinds of connectivity, called structure connectivity and
substructure connectivity. A set F' of connected subgraphs of a graph Gis a subgraph-cut of G
if G\ V(F)is a disconnected graph or K. Let H be a connected subgraph of G. Then F'is an
H-structure cut if F'is a subgraph cut, and every element in F' is isomorphic to H. The H
-structure connectivity of G, denoted by x(G; H), is defined to be the minimum cardinality of
all H-structure cuts of G. F'is an H-substructure cut if F'is a subgraph-cut, and every element
in F' is isomorphic to a connected subgraph of H. The H-substructure connectivity of G,
denoted by x°(G; H), is the minimum cardinality of all H-substructure cuts of G. Since every
H-structure cut is an H-substructure cut «*(G;H) < «x(G;H). If H=K; then we
have k(G; H) = «*(G; H).

The vertex connectivity x(G) > «*(G; H) for every subgraph H of G whereas the relation
between vertex connectivity and structure connectivity depends on H. For the graph G, given
in Figure 1, x(G) = 2, the structure connectivity of G with respect to the cycle of length
5,k(G;G) =1 and the structure connectivity of G with respect to the cycle of
length 4,x(G; Cy) = 3.

Let I" be a finite group with e as the identity. A generating set of I"is a subset £ such that
every element of I" can be expressed as a product of finitely many elements in £2. Assume that
e ¢ Qanda € Qimpliesa~! € Qandsucha subset Qis called as a symmetric generating set
of I'. Hereafter, we assume that £2is a symmetric generating set of a finite group I'. A Cayley
graph is a graph G = (V,E), where V(G) =T and two vertices x and y are adjacent if
7! € Qand it is denoted by Cay(I", 2). The inclusion of the inverse in L for every element
of £ means that Cay(I", £2) is undirected. Since £2 is a generating set for I, Cay (I, 2) is
connected and Cay (I, £2) is a regular graph of degree |Q2|. Cayley graphs are extensively dealt
in the literature and various authors including Dejter [3], Lakshmivarahan [4], Lee [5], Tamizh
Chelvam [8], and Wang [10] have worked on Cayley graphs. For example, one can refer the
survey by Tamizh Chelvam and Sivagami [9] for domination in Cayley graphs. The Cayley
graph constructed out of the finite cyclic group Z,, n > 2 along with a symmetric
generating set €2 is called a circulant graph and the same is denoted by Cir(s,£2). The
hypercube @), is the Cayley graph defined on the group Z7 with the standard orthonormal
basis as the generating set. Cheng-Kuan Lin et al. [6] have obtained x(Q),; H) and «*(&Qy; H)
for H € {K1,K11, Ki12,K13,Cyi}. Here, we provide an example in Figure 2, to exhibit a
structure cut of the circulant graph Cir(10, {1,2,3,7,8,9}) with respect to K3. In Figure 2,
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Figure 2.
Ks-structure cut of Cir
(10, {1,2,3,7,8,9}).

the structure cut is indicated by the dotted lines and note that «*(Cir(10,
{1,2,3,7,8,9}; K3)) = 2

Throughout this paper, G — X denotes the removal of a set X of subgraphs from the graph
G and G\ B denotes the removal of the set B C V(G) from the graph G. When X = {H},
G — X is simply denoted as G — H. For a graph G, the open neighborhood N (v) of a vertex
v € V(G) is the set of all vertices which are adjacent to v. The closed neighborhood of v is
N[l =N(@w)u{v}. Let G = (V1,E1) and Gy = (Vo,Ey) be two graphs. Then the
intersection of Gy and G, denoted by Gi N Go, is the graph whose vertex set is V3 n V5 and
the edge set is E; N Ey. The union of two disjoint vertex sets graphs G; = (V1,E1) and
Gy = (V3, E»), denoted by Gy U Gy, is the graph whose vertex set is V; U Va and the edge set is
Ey UE,. For basic definitions and properties related to graph theory, one can refer [2]. For
undefined definitions related to algebraic graph theory, one can refer [1].

In Section 2, we obtain the H-structure and the H-substructure connectivity of the
circulant graph Cir(n, 2) where Q = {1,...,kn—k,...,n—-1}, for 1 <k < |§| with
respect to some of its connected subgraphs. For integers # (>5) and m with2 < m < n -2,
Mane [7] proved that x(Q,;C;) < n—m, where % is a positive even integer with
2" < k< 2" and observed that x(Q4; Cs) = 2. In Section 3, for # > 4, we obtain the
exact value for x(Q,; Cs).

2. Structure and substructure connectivity of circulant graphs

Throughout this section #(>2), m and % are integers such that 1 <% < [%] and
Q={12,...,k,n—"F,...,n—1}. We take the elements of Z, as Z, = {0,1,...,n—1}.
The following result due to Wang [10] is useful in the paper.

Theorem 2.1 ([10, Wang)). Let n and k be positive integers such that 1 <k < 3],
Q={1,...;k,n—"k,...,n—1} and G = Cir(n, Q). Then x(G) = ||



By definition and from Theorem 2.1, we have the following corollary.

Corollary 2.2. Let n(>2) and k be positive integers such that 1 <k < 5], 2 ={1,... k,
n—"k,...,n—1}and G = Cir(n, Q). Then x(G; K1) = |2| and *(G; K1) = |2

A star graph K ,, (m > 1) is a complete bipartite graph comprised of two partite sets of
vertices of sizes 1 and m respectively, such that two vertices are adjacent if and only if they
are in different partite sets. If Ky, is a subgraph of Cir(n, ), then m < |Q|. If k = || and
Q={1,...,kyn—"k,...,n—1}, then the circulant graph G = Cir(n,2) is the complete
graph K,,. Now, we obtain the structure connectivity of X,, as a circulant graph with respect
to Ki . If m + 1 does not divide 7 — 1, then removal of K] ,, does not disconnect Cir (7, £2)
for any A Hence the structure connectivity of K, with respect to K, is meaningful only
when m + 1 divides 7 — 1.

Lemma 2.3. Let n(>2) and k be positive integers such that k= 3], @ ={1,...,k,
n—rk,...,n—1}and G = Cir(n Q). For a positive integer m with m < n—2, &*(G; Ki,n) =
n-1] Also K(G; Kim) =075 Ljfm + 1 divides n— 1.

Proof. By the assumption on #, % and €, Cir(n, Q) = K,.. By Theorem 2.1, Gis (n—1)-
connected. Let F' be a Kj ,,-substructure cut with minimum cardinality of G = Cir(n, Q).

Suppose ©*(G; K1) < [2= +1] Then |V(F)| <n—1and G\ V(F) is disconnected, which
is a contradiction to G is (1 — 1)-connected. Hence «*(G; K1,,) > [%=1].

m+1

Forl <i < [%= 1] 1, let H; be the subgraph of Gwithi(m + 1) as the central vertex and
im+1)-1,... 7z(m + 1) —m as the end vertices and hence isomorphic to K ,,. Consider
the subgraph H [a] of G with (n—1) as the central vertex and all remaining vertices of
(G—{H, ..., Hp1y1}) \{0,n~1} as end vertices. Note that H,1, is isomorphic to a
subgraph of Kj,. Clearly G—{H,.. H[n 1]} is the trivial graph K. Hence
K(G; Kim) £ 211, Thus «*(G; Kinm) = [m+1]

m+1

Suppose 7 + 1 divides # — 1. As mentioned above in the proof, Hn o is a subgraph of G
isomorphic to K ,, and so k(G; Ki,,) < m& Now 2 m—+1 =G Ky m) < k(G Ky m) < ZH}

Hence x(G; Ky1,n) =251 O

In Lemma 2.3, we have considered £ = |4] in which case G = Cir(n, ) is complete. Now,
we consider £ < |4],sothat G = Cir(n, £2) can never be complete. By considering 2 < |5], we
determine the structure and substructure connectivity of Cir(n, £2) with respect to K ,,

where m < 2k.

Theorem 2.4. Let n (>4),k and m be positive integers such that 1 < k < |4 and m < 2k
LetQ={1,....,k,n—"Fk,....n—1} and G = Cir(n, Q). Then the following are equivalent:

(1) KS(G§K1,m) = 1;
@m+l=2%+1=n1:
(i) (G Ky ) = L

Proof. Sincek < 4], 2| =2k <n-1

(i) = (ii). Assume that °(G; Kj,,) = 1. So that there exists a subgraph K; ; of K, for
some £,¢ < m < 2k such that G — K, is disconnected or a trivial graph. Since G is vertex
transitive, one can have the central vertex of K, as # = 0. Consider the subgraph H of G
induced by ({0, +1, ..., +k}). The graph G — H is connected and the vertices of H other than
0 are adjacent to either £+ 1 or n— (k+ 1) in G. Note that G — H is a subgraph of G — K; .
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Suppose ¢ < 2k, then G — K 4 is connected, which is a contradiction. Hence ¢ = m = 2k and
G- Ky = G- K . Itis easy to observe that the graphs G — K 9, and G — H are equal. It is
known that m = 2k < n — 2. Suppose 2k < n— 2, then G — K7 ; = G — H is connected, which
is a contradiction. This implies that t =m =2k =n—-2 Hencem +1=2k+1=n-1

(i) = (iii). Assume that m +1=2k+1=n-1 For u € V(G), deg(u) =2k =n—-2
and hence G\ N[u| = K;. Since |N(«)| = 2k = m, K3, is a subgraph of (N[«]) and hence
removal of (N[u]) from G is same as removing Kj ,, from G. Thus «(G; K1,,) = 1.

(iii) = (i). Since £°(G; K1) < k(G K1) =L (G K1) =1 O
Remark 2.5. Let n (>6) and % be positive integers such that 2 < k < |§], 2 = {1,.
n—k,...,n—1},G = Cir(n,2)and m < 2k Even without the conditionn > (m + 1) m+1]
one can talk about k*(G; K1 ,n), whereas it is not so in the case of x(G;Kj,,). For, if
n< (m+ 1)[ 1, then for any integer A with |V(}\K1 m)} < n, removal of AKj ,, does not
disconnect G.

Consider 7 < (m + 1) [;Z4]. If A < [;24], then |V(AK),)| < 2kand hence by Theorem
2.1, G is connected after removal of AK1,, from G. On the other hand if A > [m H] then
|V(7\K1ym)| > (m +1)[-2] > n This along with ]V(}\Klm” < n yields |V(M1 m)| =n
Thus G = 7\K1,m'

Now, we attempt to obtain «(Cir(n, 2); K1 ,,,) and &*(Cir(n, 2); K1 n), for2 <m+1 < k
andQ={1,....kyn—"Fk,...,.n—1}.

Theorem 2.6. Let n (>6) and k be positive integers such that 2 < k < [5], @ = {1,...,k,
n—~k,...,n—1} and G = Cir(n, Q). If m is an integer such that 2 <m+1 <k and
(m+ 1) me] < n, then k(G; K1 ) = [-2] and (G, K1,m) = [m+1]

Proof. Letag;=n—(k—i+1)for1 <i<ka =i—kfor k+1<i<2kand b =j for
k+1<j<n-(k+1). By division algorithm 2k = (m +1)s+7» and k= (m+ 1)h+7
for some 7 and 7 with0 < » < mand 0 <7 < m.

Forl<i<s=% H’, let H; be defined as follows.

V(H) - {d (m+1)i—ms A(m+1)i—(m-1) m+1)z} and edge set
E(H;) = {{aom+1)i-on-r)> Qom+1)i-m—j) } je{0,...,m}/{r'}}.
Further when » # 0, let Hy1 be defined as follows.

_ ) Qop—(r—i) if 1 < i <r
V(HS+1) - {vla'“avnﬂ»l ‘U= {bk+i—7' ifr+1 < i <m4+1

E(]‘IS+1) = {{Z},,/+1,1/j} (jE {1, oM+ 1} \ {7’, + 1}}

In G, two vertices # and v are adjacent if and only if #,v € Z, has the property that
|4 —v| < k. Since ‘a(””l)i_(m_,,,) - a(m+1)i—(m—j)| < kforevery 0 <j < mand |W+1 - vj‘ <k
for every 1 <j < m + 1, H; is indeed a subgraph of Gforevery 1 <7 <s+ 1

Note that, each H; is isomorphic to Kj,. Let H be the union of subgraphs given

- {Us H=|J K ifr=0
y =

U # Us“ K ifr #0.
Note that V(H) = m]fﬁ m N(0) CV(H), G—H is disconnected with {0} as one
component. Thus, x(G; K1 ,,) < [m+1] and so «°(G; K1 ) < [m+1] By Theorem 2.1, G is
2k-connected. Suppose there exists a set /' = {H],...,H]} of subgraphs of G such that

m+1b

m+1

m+1

} and edge set



every H! € F'is isomorphic to a subgraph of K1 ,,,, t < [%] and G — F is disconnected. Let
X = V(). Clearly |X| < 2k and by the assumption G\ X is disconnected, which is a
contradiction to G is 2k-connected.

Thus £ (G; K1,m) > [;257] andsok(G; K1) > [;25]. Hence k(G K1) = &°(G; Kym) =
[m2-f1]' O

Now we obtain «(Cir(n, 2);K1,,) and «°(Cir(n,Q); K1), for k<m+1<2k+1
andQ={1,....kyn—"Fk,...,.n—-1}
Lemma 2.7. Let n(>6) and k be positive integers such that 2 < k < |4], @ = {1,...,k,
n—rky...,n—=1} and G =Cir(n,Q). If m is an integer with k<m—+1<2k+1 and

n> (m+1)[;25), then

1 fm+1=2k+1=n—-1;

K(G§ Kl,m) = KS(G; KL”“) = {2 otherwise.

Proof. By Theorem 2.6, x(G;Ki1,,) = «°(G; K1) =2 for m +1 =k This gives that
k(G K1) <2 and so «°(G;Ki,,) <2 when k<m+1<2k+1 By Theorem 24,
k(G K1) =1=«°(G;Ky,,) if and only if m +1 =2k +1 =n—1. Hence for the other
cases k(G; K1 ,,) = 2and °(G; K1,,) = 2. Thus,

] s 1 iftm+1=2k+1=n-1;
&(G; Ky) = K(G; Kyp) = {2 otherwise. [
Now we provide an example for the K 4-substructure connectivity of the circulant graph
Cir(16,{1,2,14,15}) in Figure 3. Here n=16,k=2,m =4 and k<m+ 1 The
substructure cut is F = {H; = K 3,H> = K;5}. In Figure 3, the substructure cut F is
indicated by the dotted lines.

15 5

12 10 8
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3. Structure and substructure connectivity of hypercubes
The n-dimensional hypercube @), is the Cayley graph defined on the group Z7 with generating
set as the standard orthonormal basis. Note that @, contains 2” vertices and #2"~! edges.
Actually two distinct vertices x = (x142. .. %,)andy = (y1y2...¥,) in V(Q,) are adjacent if
and only if x; # y; for exactly one ¢ (1 < ¢ < ). For any vertex x = (x122 . . .Jgn) in Q,, let
(x)' = (xdx,...x)) where x; = x;for every j # iand x! = 1 —x;. Note that {(x)'}, ., is the
neighborhood set of xin @,,. For each ¢ = 0, 1, we have two (n — 1)-dimensional subgraphs ¢,
of @, where V(@) = {x]x = (x1x2...x,) € V(Q,) andx, =t} and E(Q.) = {{x,y}|
{x,y} € E(Q,) and x,y € V(Q.)}. Obviously, @ is isomorphic to €,_1 for each ¢ =0, 1.
The path P,, of length m is a walk with s + 1 distinct vertices and . distinct edges.
The cycle C,, of length 2 is a closed path that contains # distinct vertices.

Cheng-Kuan Lin et al. [6] proved the following theorem for the substructure connectivity
of hypercube @, with respect to the cycle C;.

Theorem 3.1 (/6, Theorem 10]). For n > 4, °(Qy; Cy) = [5].

For integers 7 (>5),%k and m with % is a positive even integer, 27 < k < 2”*! and
2 < m < n—2, Mane [7] considered the substructure connectivity of &,, with respect to the
cycle C. In fact Mane [7] proved that x(€,; G:) < n—m, and x(Q4; Cs) = 2. In this section,
for n > 4, we obtain the exact value for x(Q,; Cs).

First, we obtain the structure connectivity and the substructure connectivity of hypercube
Q,, with respect to Ps, the path of length 3.

Corollary 3.2. Forn > 4, k(Qu; Ps) = (Q; P3) = [4].

Proof. By Theorem 3.1, «°(&,; Cy) = [4]. Since all subgraphs of P’; are also subgraphs of
Cy, we have ©°(Q,; P3) > [4].

For 1 <i < [%] -1, consider the paths of length 3, R;: (a@j---ain)— (bi--bin)—
(¢ -+~ cin) = (di1 - - - diyy) Where

{ 1 ifj=2-1;
a; = .
’ 0 otherwise.

b--—{l ifj=2—1,2;
10 otherwise.

1 ifj=2;
= { 0 otherwise.

1 ifj=2,2+1,
di = { 0 otherwise.

For odd #, let Ry : (0...01) —(10...01) - (10...011) - (10...010) and for even #, let
Ry :(0...010)=(0...011) = (0...01) — (10...01). The removal of these paths R;, for
1<i< [4], of length 3 disconnects @), with (0...00) as an isolated vertex.
Hence x(@y; P3) < [3].
Thus, we have [4] < «(Qu; P3) < «(Qu; P3) < [4] and so k(Qy; P3) = &*(Qu: P3) = [5]. O
In the following lemma, we obtain an upper bound for the structure connectivity of ¢, with
respect to Gg.

Lemma 3.3. Forn > 3 k(Q; Gs) < [%].



Proof. By division algorithm, 7 = 3¢ +7,0 <7 < 2.For 1 < < ¢, consider the cycles B;
of length 6 given below:

B (ain -+ @) — (biv - bin) — (i -+~ cin) — (dit -+ - din) — (€1 - -~ &) — (fir - - fin) — (@i - - - @) Where
{ 1 ifj=3—2
jj = .
/ 0 otherwise;

b~-—{1 if j=3i—2o0r3i —1;
Y710 otherwise;

1 ifj=3-1;
= { 0  otherwise;
d..f{l if j=3i—1or3;
710 otherwise;

1 ifj=23;
b= {O otherwise;

1 ifj=3—2o0r3;
Ji= { 0 otherwise.

If =1, let Byyq:(0...001)—(0...011)—(0...0111) — (0...01111) — (00...01101) —
(0...01001) — (00...001).

If »=2 let Byy1:(0...010)—(0...0110) — (0...0111) — (0...0101) — (0...001) —
(0...011)=(00...010).

The removal of cycles By, By, .. . , By disconnects €, with (0. .. 00) as an isolated vertex.
Hence x(&y; Gs) < [5]. O

For each n > 3, Z! is a collection of 6-cles of @, and the same is taken as {{«,v,w,
x,3, 2 {u, v}, {v,w}, {w, 2}, {x,y},{y, 2}, {z,u} € E(Qn)}. Let Z¥ ={X1,..., X0} b(_a a
subset of collection of 6-cycles of @,,. Fori = 0,1, (Z); CZ is the subgraph |, X; n @, of
Q,. Cheng-Kuan Lin et al. [6] obtained the substructure connectivity of hypercube @, with
respect to K7 2 and the same the stated below to obtain a lower bound for the substructure
connectivity of the hypercube with respect to Cg.

Lemma 3.4 (/6, Theorem 6]). For n > 3, k(Q,; K12) = [5].
Lemma 3.5. If |Z}| < 2, then Q, — Z} is connected.
Proof. If J:Zfﬂ =0, then Q4—Z} =@, hence is connected. Assume that |Z}| =1
and Z¢ = {C 1 uy —ug — 3 — ug — u5 — g — t11 }.
Suppose #; € Q) for all 1 < ¢ < 6. Since @} is connected and every vertex of Q) —Z¢ is
connected to a vertex in Q}p we get that Q4 — Zé is connected.
Ifu, e Q}L for all 1 <7 < 6, then by similar arguments as above, @, — Zg is connected.
Assume that V(C)n V(@) # ¢and V(C)nV(Q}) # ¢. Without loss of generality one
can assume that |V(C)n V(Q})| < |V(C)n V(Q})|. Then we have two cases.

Case 1. Let |[V(O)nV(@)| =2 and [V(C)nV(Q})| =4. Clearly Q- (Z), is
connected and every vertex in @} — (Z}); is adjacent to a vertex in @) — (Z}),. Hence
Qs — Z§ is connected.
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Case2. Let|V(C)nV(Q)| = 3and |V(C) n V(Q})| = 3.Note that subgraphs induced by
V(C)nV(Q)and |V(C)nV(QL) are subgraph isomorphic to Ki» in €} and @}
respectively. Further both QO and @)} are isomorphic to @s. By Lemma 3.4, removal of a
K2 does not disconnect € and Q). Thus both Q) — (% ) and QY — (Z3), are connected.
Also there exists a vertex ¥ € @) — (4}), adjacent to (x e Q} — (Z$),- Thus Q4 —Z¢ is
connected. []

In the following lemma, we obtain a lower bound for the structure connectivity of @, with
respect to Cs.

Lemma 3.6. For an integer n > 4, k(Qy; Gg) > [4].

Proof. By induction on 7 By Lemma 3.5, the result is true for # = 4. Assume as induction
hypothesis that the statement holds for @;, 4 < ¢ < n— 1. To complete the proof, one has to
prove that if | Zf| < [4] —1, then @, — Z¢ is connected.

Case 1. Assume that either V(Z2) CV(Q0) or V(Z}) CV(Q.). Without loss of
generality, let us assume that V(Z2) € V(&Y). Note that @}, is connected and every vertex of
Qﬁ —Z!' is connected to a vertex in Q}Z and hence &), — Z¥ is connected.

Case 2. Suppose V(Z)nV(QL) # ¢pand V(Z2) nV(QD) # ¢.

Case 2.1. Assume that, for every 6-cycle X of Z2, V(X) c V(Q}) or V(X) c V(@)). In
this case, we have the number of 6-cycles of Z and @)} is at most [4] -2 and
\V(Z3H)nV(@)| <[4 —2. Note that [4] -1 < [*52 1] and so [4] -2 < [*3~ 1] By the
1nduct10n hypothesis, k(Q; Cs) > [21] and thus Qﬁl (Z8); is connected for 1€ {0,1}.
Since 6([4] — 2) <6(H2-2) =2(n-3) <2(n-2) <2"7? fori =0,1,@, - (Z}), contains
more than Z— " vertices. Hence there exists a vertex « € QL — (Z1), which is adjacent to
()" € Q —(Z2), Hence @, — Z} is connected.

Case 2.2. Assume that V(Z2)nV(QL) # ¢and V(Z!)nV(Q1) # ¢ and there is a 6-

cycle X € Z} such that V(X)n V(Q,) # ¢ for eachi =0, 1.
Let 2§ = {X1,Xs,..., X}, m < [§] —1 where each X; is a 6-cycle. For any X; € Zf, the
elements of V(X;) differ from one another in at most 3 coordinates. Let us name those
coordinates as kj, ko, k3. 1€, if 0 (or 1) is the pth coordinate of an element in V(X;) for
D # ki, kzz, ki3, then every element of V(X;) has 0 (or 1) as the pth coordinate.

Hence in total we have 3m such coordinates k;1, &0, k3, for 1 < 7 < m (not necessarily
distinct) corresponding to all elements in Z§. Further, 3m < 3[%] -3 < 3(”T+3) —3 = n.Thus
thereexistsk € {1,2...,n}suchthatk & {k;, ki, kis}foreachl < ¢ < m. This means that
kth coordinate of V' (X;) is same in all the 6 elements of X;. ie., the kth coordinate of all the
elements of V(X;) are equal.

Let us partition the vertices of @), into two subsets V; = {x = (x1...%x,) € V(@) :
X = j kis the index identified above},j € {0,1}. By the above arguments, for every i
1 <17 < mjeither V(X;) € Voor V(X;) € V1. Note that both the induced subgraphs (V) and
(V1) of @, are isomorphic to &,—1. Now, if ZZ C V; for some; € {0, 1}, proceeding as in Case
1, @, — 7} is connected. Otherwise, proceeding as in Case 2.1, @, — Z! is connected. Thus,
K(Qn§c6) > [%-l O

Figure 4 illustrates the Cy-structure connectivity of Q4. In Figure 4, the structure cut is
indicated with the dotted lines.

Since Qs is connected and by Lemma 3.3, k(Qs; ) < [3] = 1, x(Q3; Cs) = 1 = [3]. Also,
by Lemma 3.3 and 3.6, we have the following result.

Theorem 3.7. Forn > 3, &°(Qu; Gs) < x(Qu; Cs) = [4].
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Figure 4.
Cs-structure cut of Q.
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