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Abstract
Let H be a connected subgraph of a connected graph G:The H-structure connectivity of the graph G, denoted
by κðG;HÞ; is the minimum cardinality of a minimal set of subgraphs F ¼ fH 0

1;H
0
2; . . . ;H

0
mg in G, such that

everyH 0
i ∈ F is isomorphic toH and removal of F from Gwill disconnect G. TheH-substructure connectivity

of the graph G, denoted by κsðG;HÞ; is the minimum cardinality of a minimal set of subgraphs
F ¼ fJ 01; J 02; . . . ; J 0mg in G, such that every J 0i ∈ F is a connected subgraph of H and removal of F from G
will disconnect G: In this paper, we provide the H-structure and the H-substructure connectivity of the
circulant graph Cirðn;ΩÞwhereΩ ¼ f1; . . . ; k; n− k; . . . ; n− 1g; 1 ≤ k ≤ bn2c and the hypercube Qn for some
connected subgraphs H :
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1. Introduction
A simple graph G ¼ ðV ;EÞ is a finite nonempty set V ðGÞ of objects called vertices together
with a (possibly empty) setEðGÞof unordered pairs of distinct vertices ofG called edges. Two
distinct vertices u; v ∈ V ðGÞ are said to be adjacent in G if u and v are connected by an edge
and it is represented by fu; vg ∈ EðGÞ. A graph G is said to be trivial if it contains only one
vertex and no edges. The connectivity is an important indicator of the reliability and fault
tolerability of a network. The vertex connectivity of a connected graph G, denoted by κðGÞ, is
the minimum cardinality of a vertex subset S ⊆VðGÞ, whose removal would disconnect G or
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G n S is the trivial graph. As a generalization of the vertex connectivity κðGÞ, Cheng-Kuan Lin
et al. [6] introduced two new kinds of connectivity, called structure connectivity and
substructure connectivity. A setF of connected subgraphs of a graphG is a subgraph-cut ofG
if G nVðFÞ is a disconnected graph or K1. Let H be a connected subgraph of G. Then F is an
H-structure cut if F is a subgraph cut, and every element in F is isomorphic to H. The H
-structure connectivity of G, denoted by κðG;HÞ, is defined to be the minimum cardinality of
allH-structure cuts of G. F is anH-substructure cut if F is a subgraph-cut, and every element
in F is isomorphic to a connected subgraph of H. The H-substructure connectivity of G,
denoted by κsðG;HÞ, is the minimum cardinality of all H-substructure cuts of G. Since every
H-structure cut is an H-substructure cut κsðG;HÞ ≤ κðG;HÞ. If H ¼ K1 then we
have κðG;HÞ ¼ κsðG;HÞ.

The vertex connectivity κðGÞ ≥ κsðG;HÞ for every subgraphH of Gwhereas the relation
between vertex connectivity and structure connectivity depends onH. For the graphG, given
in Figure 1, κðGÞ ¼ 2, the structure connectivity of G with respect to the cycle of length
5; κðG;C5Þ ¼ 1 and the structure connectivity of G with respect to the cycle of
length 4; κðG;C4Þ ¼ 3.

Let Γ be a finite group with e as the identity. A generating set of Γ is a subsetΩ such that
every element ofΓ can be expressed as a product of finitelymany elements inΩ. Assume that
e ∉ Ωand a ∈ Ω implies a−1 ∈ Ωand such a subsetΩ is called as a symmetric generating set
of Γ. Hereafter, we assume thatΩ is a symmetric generating set of a finite group Γ. A Cayley
graph is a graph G ¼ ðV ;EÞ, where VðGÞ ¼ Γ and two vertices x and y are adjacent if
xy−1 ∈ Ω and it is denoted by CayðΓ;ΩÞ. The inclusion of the inverse inΩ for every element
of Ω means that CayðΓ;ΩÞ is undirected. Since Ω is a generating set for Γ, CayðΓ;ΩÞ is
connected and CayðΓ;ΩÞ is a regular graph of degree jΩj. Cayley graphs are extensively dealt
in the literature and various authors including Dejter [3], Lakshmivarahan [4], Lee [5], Tamizh
Chelvam [8], and Wang [10] have worked on Cayley graphs. For example, one can refer the
survey by Tamizh Chelvam and Sivagami [9] for domination in Cayley graphs. The Cayley
graph constructed out of the finite cyclic group ℤn; n ≥ 2 along with a symmetric
generating set Ω is called a circulant graph and the same is denoted by Cirðn;ΩÞ. The
hypercube Qn is the Cayley graph defined on the group ℤn

2 with the standard orthonormal
basis as the generating set. Cheng-Kuan Lin et al. [6] have obtained κðQn;HÞ and κsðQn;HÞ
for H ∈ fK1;K1;1; K1;2;K1;3;C4g. Here, we provide an example in Figure 2, to exhibit a
structure cut of the circulant graph Cirð10; f1; 2; 3; 7; 8; 9gÞ with respect to K3. In Figure 2,

Figure 1.
κðGÞ ¼ 2; κðG;C5Þ ¼ 1;

κðG;C4Þ ¼ 3.
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the structure cut is indicated by the dotted lines and note that κsðCirð10;
f1; 2; 3; 7; 8; 9g;K3ÞÞ ¼ 2.

Throughout this paper,G−X denotes the removal of a setX of subgraphs from the graph
G and G nB denotes the removal of the set B ⊆VðGÞ from the graph G. When X ¼ fHg,
G−X is simply denoted as G−H. For a graph G, the open neighborhood NðvÞ of a vertex
v ∈ V ðGÞ is the set of all vertices which are adjacent to v. The closed neighborhood of v is
N ½v� ¼ NðvÞ∪ fvg. Let G1 ¼ ðV1;E1Þ and G2 ¼ ðV2;E2Þ be two graphs. Then the
intersection of G1 and G2, denoted by G1 ∩G2, is the graph whose vertex set is V1 ∩V2 and
the edge set is E1 ∩E2. The union of two disjoint vertex sets graphs G1 ¼ ðV1;E1Þ and
G2 ¼ ðV2;E2Þ, denoted byG1 ∪G2, is the graphwhose vertex set isV1 ∪V2 and the edge set is
E1 ∪E2. For basic definitions and properties related to graph theory, one can refer [2]. For
undefined definitions related to algebraic graph theory, one can refer [1].

In Section 2, we obtain the H-structure and the H-substructure connectivity of the
circulant graph Cirðn;ΩÞ where Ω ¼ f1; . . . ; k; n− k; . . . ; n− 1g, for 1 ≤ k ≤ bn2c with
respect to some of its connected subgraphs. For integers n ð≥5Þ and mwith 2 ≤ m ≤ n− 2,
Mane [7] proved that κðQn;CkÞ ≤ n−m, where k is a positive even integer with
2m < k < 2mþ1 and observed that κðQ4;C6Þ ¼ 2. In Section 3, for n ≥ 4, we obtain the
exact value for κðQn;C6Þ.

2. Structure and substructure connectivity of circulant graphs
Throughout this section n ð≥2Þ, m and k are integers such that 1 ≤ k ≤ bn2c and
Ω ¼ f1; 2; . . . ; k; n− k; . . . ; n− 1g. We take the elements of ℤn as ℤn ¼ f0; 1; . . . ; n− 1g.
The following result due to Wang [10] is useful in the paper.

Theorem 2.1 ([10, Wang]). Let n and k be positive integers such that 1 ≤ k ≤ bn2c,
Ω ¼ f1; . . . ; k; n− k; . . . ; n− 1g and G ¼ Cirðn;ΩÞ. Then κðGÞ ¼ jΩj.

Figure 2.
K3-structure cut of Cir
ð10; f1; 2; 3; 7; 8; 9gÞ.
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By definition and from Theorem 2.1, we have the following corollary.

Corollary 2.2. Let n ð≥2Þ and k be positive integers such that 1 ≤ k ≤ bn2c, Ω ¼ f1; . . . ; k;
n− k; . . . ; n− 1g and G ¼ Cirðn;ΩÞ. Then κðG;K1Þ ¼ jΩj and κsðG;K1Þ ¼ jΩj.

A star graph K1;m ðm ≥ 1Þ is a complete bipartite graph comprised of two partite sets of
vertices of sizes 1 and m respectively, such that two vertices are adjacent if and only if they
are in different partite sets. If K1;m is a subgraph of Cirðn;ΩÞ, then m ≤ jΩj. If k ¼ bn2c and
Ω ¼ f1; . . . ; k; n− k; . . . ; n− 1g, then the circulant graph G ¼ Cirðn;ΩÞ is the complete
graph Kn. Now, we obtain the structure connectivity of Kn, as a circulant graph with respect
to K1;m. If mþ 1 does not divide n− 1, then removal of λK1;m does not disconnect Cirðn;ΩÞ
for any λ. Hence the structure connectivity of Kn with respect to K1;m is meaningful only
when mþ 1 divides n− 1.

Lemma 2.3. Let n ð≥2Þ and k be positive integers such that k ¼ bn2c, Ω ¼ f1; . . . ; k;
n− k; . . . ; n− 1g and G ¼ Cirðn;ΩÞ. For a positive integer m with m ≤ n− 2, κsðG; K1;mÞ ¼
⌈n− 1
mþ1⌉. Also, κðG; K1;mÞ ¼ n− 1

mþ1 if mþ 1 divides n− 1.

Proof. By the assumption on n; k and Ω, Cirðn;ΩÞ ¼ Kn. By Theorem 2.1, G is ðn− 1Þ-
connected. Let F be a K1;m-substructure cut with minimum cardinality of G ¼ Cirðn;ΩÞ.
Suppose κsðG; K1;mÞ < ⌈n− 1

mþ1⌉. Then jV ðFÞj < n− 1 and G nVðFÞ is disconnected, which

is a contradiction to G is ðn− 1Þ-connected. Hence κsðG;K1;mÞ ≥ ⌈n− 1
mþ1⌉.

For 1 ≤ i ≤ ⌈n− 1
mþ1⌉− 1, letHi be the subgraph of Gwith iðmþ 1Þ as the central vertex and

iðmþ 1Þ− 1; . . . ; iðmþ 1Þ−m as the end vertices and hence isomorphic to K1;m. Consider
the subgraph H⌈ n−1

mþ1⌉
of G with ðn− 1Þ as the central vertex and all remaining vertices of

ðG− fH1; . . . ;H⌈ n−1
mþ1⌉−1

gÞ n f0; n− 1g as end vertices. Note that H⌈ n−1
mþ1⌉

is isomorphic to a

subgraph of K1;m. Clearly G− fH1; . . . ;H⌈ n−1
mþ1⌉

g is the trivial graph K1. Hence

κsðG; K1;mÞ ≤ ⌈n− 1
mþ1⌉. Thus κ

sðG; K1;mÞ ¼ ⌈n− 1
mþ1⌉.

Suppose mþ 1 divides n− 1. As mentioned above in the proof, Hn−1
mþ1

is a subgraph of G

isomorphic to K1;m and so κðG;K1;mÞ ≤ n− 1
mþ1. Now

n− 1
mþ1 ¼ κsðG;K1;mÞ ≤ κðG;K1;mÞ ≤ n− 1

mþ1.

Hence κðG;K1;mÞ ¼ n− 1
mþ1. ,

In Lemma 2.3, we have considered k ¼ bn2c in which case G ¼ Cirðn;ΩÞ is complete. Now,
we consider k < bn2c, so thatG ¼ Cirðn;ΩÞcan never be complete. By considering k < bn2c, we
determine the structure and substructure connectivity of Cirðn;ΩÞ with respect to K1;m

where m ≤ 2k.

Theorem 2.4. Let n ð≥4Þ; k and m be positive integers such that 1 ≤ k < bn2c and m ≤ 2k.
Let Ω ¼ f1; . . . ; k; n− k; . . . ; n− 1g and G ¼ Cirðn;ΩÞ. Then the following are equivalent:

(i) κsðG;K1;mÞ ¼ 1;

(ii) mþ 1 ¼ 2kþ 1 ¼ n− 1;

(iii) κðG;K1;mÞ ¼ 1.

Proof. Since k < bn2c, jΩj ¼ 2k < n− 1.

(i) 0 (ii). Assume that κsðG;K1;mÞ ¼ 1. So that there exists a subgraph K1;t of K1;m for
some t; t ≤ m ≤ 2k such that G−K1;t is disconnected or a trivial graph. Since G is vertex
transitive, one can have the central vertex of K1;t as u ¼ 0. Consider the subgraph H of G
induced by 〈f0;±1; . . . ;±kg〉. The graphG−H is connected and the vertices ofH other than
0 are adjacent to either kþ 1 or n− ðkþ 1Þ in G. Note that G−H is a subgraph of G−K1;t.
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Suppose t < 2k, then G−K1;t is connected, which is a contradiction. Hence t ¼ m ¼ 2k and
G−K1;t ¼ G−K1;2k. It is easy to observe that the graphs G−K1;2k and G−H are equal. It is
known thatm ¼ 2k ≤ n− 2. Suppose 2k < n− 2, then G−K1;t ¼ G−H is connected, which
is a contradiction. This implies that t ¼ m ¼ 2k ¼ n− 2. Hence mþ 1 ¼ 2kþ 1 ¼ n− 1.

(ii) 0 (iii). Assume that mþ 1 ¼ 2kþ 1 ¼ n− 1. For u ∈ V ðGÞ, degðuÞ ¼ 2k ¼ n− 2
and hence G nN ½u� ¼ K1. Since jNðuÞj ¼ 2k ¼ m, K1;m is a subgraph of hN ½u�i and hence
removal of hN ½u�i from G is same as removing K1;m from G. Thus κðG;K1;mÞ ¼ 1.

(iii) 0 (i). Since κsðG;K1;mÞ ≤ κðG;K1;mÞ ¼ 1, κsðG;K1;mÞ ¼ 1. ,

Remark 2.5. Let n ð≥6Þ and k be positive integers such that 2 ≤ k < bn2c, Ω ¼ f1; . . . ; k;
n− k; . . . ; n− 1g, G ¼ Cirðn;ΩÞ andm ≤ 2k. Even without the condition n > ðmþ 1Þ⌈ 2k

mþ1⌉,

one can talk about κsðG;K1;mÞ, whereas it is not so in the case of κðG;K1;mÞ. For, if
n ≤ ðmþ 1Þ⌈ 2k

mþ1⌉, then for any integer λ with
��VðλK1;mÞ

�� ≤ n, removal of λK1;m does not

disconnect G.

Consider n ≤ ðmþ 1Þ⌈ 2k
mþ1⌉. If λ < ⌈ 2k

mþ1⌉, then
��VðλK1;mÞ

�� < 2k and hence by Theorem
2.1, G is connected after removal of λK1;m from G. On the other hand if λ ≥ ⌈ 2k

mþ1⌉, then��VðλK1;mÞ
�� ≥ ðmþ 1Þ⌈ 2k

mþ1⌉ ≥ n. This along with
��V ðλK1;mÞ

�� ≤ n yields
��VðλK1;mÞ

�� ¼ n.

Thus G ¼ λK1;m.
Now, we attempt to obtain κðCirðn;ΩÞ;K1;mÞ and κsðCirðn;ΩÞ;K1;mÞ, for 2 ≤ mþ 1 ≤ k

and Ω ¼ f1; . . . ; k; n− k; . . . ; n− 1g.
Theorem 2.6. Let n ð≥6Þ and k be positive integers such that 2 ≤ k < bn2c, Ω ¼ f1; . . . ; k;
n− k; . . . ; n− 1g and G ¼ Cirðn;ΩÞ. If m is an integer such that 2 ≤ mþ 1 ≤ k and

ðmþ 1Þ⌈ 2k
mþ1⌉ < n, then κðG;K1;mÞ ¼ ⌈ 2k

mþ1⌉ and κsðG;K1;mÞ ¼ ⌈ 2k
mþ1⌉.

Proof. Let ai ¼ n− ðk− i þ 1Þ for 1 ≤ i ≤ k, ai ¼ i− k for kþ 1 ≤ i ≤ 2k and bj ¼ j for
kþ 1 ≤ j ≤ n− ðkþ 1Þ. By division algorithm 2k ¼ ðmþ 1Þsþ r and k ¼ ðmþ 1Þhþ r0
for some r and r0 with 0 ≤ r ≤ m and 0 ≤ r0 ≤ m.

For 1 ≤ i ≤ s ¼ 2k− r
mþ1, let Hi be defined as follows.

VðHiÞ ¼ faðmþ1Þi−m; aðmþ1Þi−ðm−1Þ; . . . ; aðmþ1Þig and edge set

EðHiÞ ¼ ffaðmþ1Þi−ðm−r0Þ; aðmþ1Þi−ðm−jÞg : j∈ f0; . . . ;mg = fr0gg:

Further when r ≠ 0, let Hsþ1 be defined as follows.

VðHsþ1Þ ¼
�
v1; . . . ; vmþ1 : vi ¼

�
a2k−ðr−iÞ if 1 ≤ i ≤ r

bkþi−r if r þ 1 ≤ i ≤ mþ 1

�
and edge set

EðHsþ1Þ ¼ ffvr0þ1; vjg : j∈ f1; . . . ;mþ 1g n fr0 þ 1gg:
In G, two vertices u and v are adjacent if and only if u; v ∈ ℤn has the property that
ju− vj ≤ k. Since

��aðmþ1Þi−ðm−r0Þ − aðmþ1Þi−ðm−jÞ
�� ≤ k for every 0 ≤ j ≤ m and

��vr0þ1 − vj
�� ≤ k

for every 1 ≤ j ≤ mþ 1, Hi is indeed a subgraph of G for every 1 ≤ i ≤ sþ 1.
Note that, each Hi is isomorphic to K1;m. Let H be the union of subgraphs given

by H ¼
([s

i¼1
Hi ¼

[s

i¼1
K1;m if r ¼ 0;[sþ1

i¼1
Hi ¼

[sþ1

i¼1
K1;m if r ≠ 0:

Note that V ðHÞ ¼ ⌈ 2k
mþ1⌉K1;m, Nð0Þ ⊆V ðHÞ, G−H is disconnected with f0g as one

component. Thus, κðG;K1;mÞ ≤ ⌈ 2k
mþ1⌉ and so κsðG;K1;mÞ ≤ ⌈ 2k

mþ1⌉. By Theorem 2.1, G is

2k-connected. Suppose there exists a set F 0 ¼ fH 0
1; . . . ;H

0
tg of subgraphs of G such that
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everyH 0
i ∈ F 0 is isomorphic to a subgraph ofK1;m, t < ⌈ 2k

mþ1⌉ andG−F 0 is disconnected. Let
X ¼ V ðF 0Þ. Clearly jX j < 2k and by the assumption G nX is disconnected, which is a
contradiction to G is 2k-connected.

Thus κsðG;K1;mÞ ≥ ⌈ 2k
mþ1⌉and so κðG;K1;mÞ ≥ ⌈ 2k

mþ1⌉. Hence κðG;K1;mÞ ¼ κsðG;K1;mÞ ¼
⌈ 2k
mþ1⌉. ,
Now we obtain κðCirðn;ΩÞ;K1;mÞ and κsðCirðn;ΩÞ;K1;mÞ, for k < mþ 1 ≤ 2kþ 1

and Ω ¼ f1; . . . ; k; n− k; . . . ; n− 1g.
Lemma 2.7. Let n ð≥6Þ and k be positive integers such that 2 ≤ k < bn2c, Ω ¼ f1; . . . ; k;
n− k; . . . ; n− 1g and G ¼ Cirðn;ΩÞ. If m is an integer with k < mþ 1 ≤ 2kþ 1 and

n > ðmþ 1Þ⌈ 2k
mþ1⌉, then

κðG; K1;mÞ ¼ κsðG; K1;mÞ ¼
�
1 if mþ 1 ¼ 2kþ 1 ¼ n� 1;
2 otherwise:

Proof. By Theorem 2.6, κðG;K1;mÞ ¼ κsðG;K1;mÞ ¼ 2 for mþ 1 ¼ k. This gives that
κðG;K1;mÞ ≤ 2 and so κsðG;K1;mÞ ≤ 2 when k < mþ 1 ≤ 2kþ 1. By Theorem 2.4,
κðG;K1;mÞ ¼ 1 ¼ κsðG;K1;mÞ if and only if mþ 1 ¼ 2kþ 1 ¼ n− 1. Hence for the other
cases κðG;K1;mÞ ≥ 2 and κsðG;K1;mÞ ≥ 2. Thus,

κðG; K1;mÞ ¼ κsðG; K1;mÞ ¼
�
1 if mþ 1 ¼ 2kþ 1 ¼ n� 1;
2 otherwise: ,

Now we provide an example for the K1;4-substructure connectivity of the circulant graph
Cirð16; f1; 2; 14; 15gÞ in Figure 3. Here n ¼ 16; k ¼ 2;m ¼ 4 and k < mþ 1. The
substructure cut is F ¼ fH1 ≅ K1;3;H2 ≅ K1;2g. In Figure 3, the substructure cut F is
indicated by the dotted lines.

Figure 3.
K1;4-substructure

cut of Cirð16;
f1; 2; 14; 15gÞ.
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3. Structure and substructure connectivity of hypercubes
The n-dimensional hypercubeQn is the Cayley graph defined on the groupℤn

2 with generating
set as the standard orthonormal basis. Note that Qn contains 2

n vertices and n2n−1 edges.
Actually two distinct vertices x ¼ ðx1x2 . . . xnÞ and y ¼ ðy1y2 . . . ynÞ in V ðQnÞ are adjacent if
and only if xi ≠ yi for exactly one i (1 ≤ i ≤ n). For any vertex x ¼ ðx1x2 . . . xnÞ in Qn, let

ðxÞi ¼ ðxi1xi2 . . . xinÞwhere xij ¼ xj for every j ≠ i and xii ¼ 1− xi. Note that fðxÞig1≤i≤n is the
neighborhood set of x inQn. For each t ¼ 0; 1, we have two ðn− 1Þ-dimensional subgraphsQt

n

of Qn where V ðQt
nÞ ¼ fxjx ¼ ðx1x2 . . . xnÞ ∈ V ðQnÞ and xn ¼ tg and EðQt

nÞ ¼ ffx; ygj
fx; yg ∈ EðQnÞ and x; y ∈ VðQt

nÞg. Obviously, Qt
n is isomorphic to Qn−1 for each t ¼ 0; 1.

The path Pm of length m is a walk with mþ 1 distinct vertices and m distinct edges.
The cycle Cm of length m is a closed path that contains m distinct vertices.

Cheng-Kuan Lin et al. [6] proved the following theorem for the substructure connectivity
of hypercube Qn with respect to the cycle C4.

Theorem 3.1 ([6, Theorem 10]). For n ≥ 4, κsðQn;C4Þ ¼ ⌈n2⌉.

For integers n ð≥5Þ; k and m with k is a positive even integer, 2m < k < 2mþ1 and
2 ≤ m ≤ n− 2, Mane [7] considered the substructure connectivity of Qn with respect to the
cycle C6. In fact Mane [7] proved that κðQn;CkÞ ≤ n−m, and κðQ4;C6Þ ¼ 2. In this section,
for n ≥ 4, we obtain the exact value for κðQn;C6Þ.

First, we obtain the structure connectivity and the substructure connectivity of hypercube
Qn with respect to P3, the path of length 3.

Corollary 3.2. For n ≥ 4, κðQn;P3Þ ¼ κsðQn;P3Þ ¼ ⌈n2⌉.

Proof. By Theorem 3.1, κsðQn;C4Þ ¼ ⌈n2⌉. Since all subgraphs of P3 are also subgraphs of
C4, we have κsðQn;P3Þ ≥ ⌈n2⌉.

For 1 ≤ i ≤ ⌈n2⌉− 1, consider the paths of length 3, Ri : ðai1 � � � ainÞ− ðbi1 � � � binÞ−
ðci1 � � � cinÞ− ðdi1 � � � dinÞwhere

aij ¼
�
1 if j ¼ 2i � 1;

0 otherwise:

bij ¼
�
1 if j ¼ 2i � 1; 2i;

0 otherwise:

cij ¼
�
1 if j ¼ 2i;

0 otherwise:

dij ¼
�
1 if j ¼ 2i; 2i þ 1;

0 otherwise:

For odd n, let R⌈n2⌉
: ð0 . . . 01Þ− ð10 . . . 01Þ− ð10 . . . 011Þ− ð10 . . . 010Þ and for even n, let

R⌈n2⌉
: ð0 . . . 010Þ− ð0 . . . 011Þ− ð0 . . . 01Þ− ð10 . . . 01Þ. The removal of these paths Ri, for

1 ≤ i ≤ ⌈n2⌉, of length 3 disconnects Qn with ð0 . . . 00Þ as an isolated vertex.
Hence κðQn;P3Þ ≤ ⌈n2⌉.

Thus, we have ⌈n2⌉ ≤ κsðQn;P3Þ ≤ κðQn;P3Þ ≤ ⌈n2⌉ and so κðQn;P3Þ ¼ κsðQn;P3Þ ¼ ⌈n2⌉.,
In the following lemma,we obtain an upper bound for the structure connectivity ofQnwith

respect to C6.

Lemma 3.3. For n ≥ 3, κðQn;C6Þ ≤ ⌈n3⌉.
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Proof. By division algorithm, n ¼ 3qþ r, 0 ≤ r ≤ 2. For 1 ≤ i ≤ q, consider the cycles Bi

of length 6 given below:

Bi : ðai1 � � � ainÞ− ðbi1 � � � binÞ− ðci1 � � � cinÞ− ðdi1 � � � dinÞ− ðei1 � � � einÞ− ðfi1 � � � finÞ− ðai1 � � � ainÞwhere

aij ¼
�
1 if j ¼ 3i � 2;

0 otherwise;

bij ¼
�
1 if j ¼ 3i � 2 or 3i � 1;

0 otherwise;

cij ¼
�
1 if j ¼ 3i � 1;

0 otherwise;

dij ¼
�
1 if j ¼ 3i � 1 or 3i;

0 otherwise;

eij ¼
�
1 if j ¼ 3i;

0 otherwise;

fij ¼
�
1 if j ¼ 3i � 2 or 3i;

0 otherwise:

If r ¼ 1, let Bqþ1 : ð0 . . . 001Þ− ð0 . . . 011Þ− ð0 . . . 0111Þ− ð0 . . . 01111Þ− ð00 . . . 01101Þ−
ð0 . . . 01001Þ− ð00 . . . 001Þ.

If r ¼ 2, let Bqþ1 : ð0 . . . 010Þ− ð0 . . . 0110Þ− ð0 . . . 0111Þ− ð0 . . . 0101Þ− ð0 . . . 001Þ−
ð0 . . . 011Þ− ð00 . . . 010Þ.

The removal of cyclesB1;B2; . . . ;B⌈n3⌉
disconnectsQnwith ð0 . . . 00Þas an isolated vertex.

Hence κðQn;C6Þ ≤ ⌈n3⌉. ,

For each n ≥ 3, Zn
6 is a collection of 6-cles of Qn and the same is taken as ffu; v;w;

x; y; zgjfu; vg; fv;wg; fw; xg; fx; yg; fy; zg; fz; ug ∈ EðQnÞg. Let Zn
6 ¼ fX1; . . . ;Xmg be a

subset of collection of 6-cycles of Qn. For i ¼ 0; 1, ðZn
6 Þi ⊆ Zn

6 is the subgraph
Sm

j¼1Xj ∩ Qi
n of

Qn. Cheng-Kuan Lin et al. [6] obtained the substructure connectivity of hypercube Qn with
respect to K1;2 and the same the stated below to obtain a lower bound for the substructure
connectivity of the hypercube with respect to C6.

Lemma 3.4 ([6, Theorem 6]). For n ≥ 3, κðQn;K1;2Þ ¼ ⌈n2⌉.

Lemma 3.5. If
��Z 4

6

�� < 2, then Q4 − Z 4
6 is connected.

Proof. If
��Z 4

6

�� ¼ 0, then Q4 − Z 4
6 ¼ Q4, hence is connected. Assume that

��Z 4
6

�� ¼ 1
and Z 4

6 ¼ fC : u1 − u2 − u3 − u4 − u5 − u6 − u1g.
Suppose ui ∈ Q0

4 for all 1 ≤ i ≤ 6. Since Q1
4 is connected and every vertex of Q0

4 − Z 4
6 is

connected to a vertex in Q1
4, we get that Q4 − Z 4

6 is connected.

If ui ∈ Q1
4 for all 1 ≤ i ≤ 6, then by similar arguments as above, Q4 − Z 4

6 is connected.

Assume that V ðCÞ∩V ðQ0
4Þ ≠ f and V ðCÞ∩V ðQ1

4Þ ≠ f. Without loss of generality one

can assume that jVðCÞ∩V ðQ0
4Þj ≤ jV ðCÞ∩V ðQ1

4Þj. Then we have two cases.

Case 1. Let jV ðCÞ∩V ðQ0
4Þj ¼ 2 and jVðCÞ∩V ðQ1

4Þj ¼ 4. Clearly Q0
4 − ðZ 4

6 Þ0 is
connected and every vertex in Q1

4 − ðZ 4
6 Þ1 is adjacent to a vertex in Q0

4 − ðZ 4
6 Þ0. Hence

Q4 − Z 4
6 is connected.
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Case 2. Let jV ðCÞ∩V ðQ0
4Þj ¼ 3and jV ðCÞ∩V ðQ1

4Þj ¼ 3. Note that subgraphs induced by
jV ðCÞ∩VðQ0

4Þ and jVðCÞ∩V ðQ1
4Þ are subgraph isomorphic to K1;2 in Q0

4 and Q1
4

respectively. Further both Q0
4 and Q1

4 are isomorphic to Q3. By Lemma 3.4, removal of a

K1;2 does not disconnect Q0
4 and Q1

4. Thus both Q0
4 − ðZ 4

6 Þ0 and Q0
4 − ðZ 4

6 Þ0 are connected.

Also there exists a vertex x ∈ Q0
4 − ðZ 4

6 Þ0 adjacent to ðxÞ4 ∈ Q1
4 − ðZ 4

6 Þ1. Thus Q4 − Z 4
6 is

connected. ,

In the following lemma, we obtain a lower bound for the structure connectivity ofQnwith
respect to C6.

Lemma 3.6. For an integer n ≥ 4, κðQn;C6Þ ≥ ⌈n3⌉.

Proof. By induction on n. By Lemma 3.5, the result is true for n ¼ 4. Assume as induction
hypothesis that the statement holds for Qi, 4 ≤ i ≤ n− 1. To complete the proof, one has to
prove that if jZn

6 j ≤ ⌈n3⌉− 1, then Qn − Zn
6 is connected.

Case 1. Assume that either V ðZn
6 Þ ⊆V ðQ0

nÞ or V ðZn
6 Þ ⊆V ðQ1

nÞ. Without loss of
generality, let us assume thatV ðZn

6 Þ ⊆V ðQ0
nÞ. Note thatQ1

n is connected and every vertex of

Q0
n − Zn

6 is connected to a vertex in Q1
n and hence Qn − Zn

6 is connected.

Case 2. Suppose V ðZn
6 Þ∩VðQ1

nÞ ≠ f and VðZn
6 Þ∩V ðQ0

nÞ ≠ f.
Case 2.1. Assume that, for every 6-cycle X of Zn

6 , VðXÞ⊂VðQ1
nÞ or V ðXÞ⊂V ðQ0

nÞ. In
this case, we have the number of 6-cycles of Zn

6 and Q1
n is at most ⌈n3⌉− 2 and

jV ðZn
6 Þ∩V ðQ0

nÞj ≤ ⌈n3⌉− 2. Note that ⌈n3⌉− 1 ≤ ⌈n− 1
3 ⌉ and so ⌈n3⌉− 2 < ⌈n− 1

3 ⌉. By the

induction hypothesis, κðQi
n;C6Þ ≥ ⌈n− 1

3 ⌉ and thus Qi
n − ðZn

6 Þi is connected for i ∈ f0; 1g.
Since 6ð⌈n3⌉− 2Þ < 6ðnþ3

3 − 2Þ ¼ 2ðn− 3Þ < 2ðn− 2Þ ≤ 2n−2, for i ¼ 0; 1,Qi
n − ðZn

6 Þi contains
more than 2n−1

2 vertices. Hence there exists a vertex u ∈ Q1
n − ðZn

6 Þ1 which is adjacent to

ðuÞn−1 ∈ Q0
n − ðZn

6 Þ0. Hence Qn − Zn
6 is connected.

Case 2.2. Assume that VðZn
6 Þ∩V ðQ1

nÞ ≠ f and VðZn
6 Þ∩V ðQ0

nÞ ≠ f and there is a 6-
cycle X ∈ Zn

6 such that V ðXÞ∩VðQi
nÞ ≠ f for each i ¼ 0; 1.

Let Zn
6 ¼ fX1;X2; . . . ;Xmg, m ≤ ⌈n3⌉− 1 where each Xi is a 6-cycle. For any Xi ∈ Zn

6 , the
elements of V ðXiÞ differ from one another in at most 3 coordinates. Let us name those
coordinates as ki1; ki2; ki3. i.e., if 0 (or 1) is the pth coordinate of an element in V ðXiÞ for
p ≠ ki1; ki2; ki3, then every element of V ðXiÞ has 0 (or 1) as the pth coordinate.

Hence in total we have 3m such coordinates ki1; ki2; ki3, for 1 ≤ i ≤ m (not necessarily
distinct) corresponding to all elements in Zn

6 . Further, 3m ≤ 3⌈n3⌉− 3 < 3ðnþ3
3 Þ− 3 ¼ n. Thus

there exists k ∈ f1; 2 . . . ; ngsuch that k ∉ fki1; ki2; ki3g for each 1 ≤ i ≤ m. This means that
kth coordinate of V ðXiÞ is same in all the 6 elements of Xi. i.e., the kth coordinate of all the
elements of VðXiÞ are equal.

Let us partition the vertices of Qn into two subsets Vj ¼ fx ¼ ðx1 . . . xnÞ ∈ V ðQnÞ :
xk ¼ j; k is the index identified aboveg; j ∈ f0; 1g. By the above arguments, for every i,
1 ≤ i ≤ m, eitherVðXiÞ ⊆V0 orVðXiÞ ⊆V1. Note that both the induced subgraphs hV0i and
hV1i of Qn are isomorphic toQn−1. Now, if Z

n
6 ⊆Vj for some j ∈ f0; 1g, proceeding as in Case

1, Qn − Zn
6 is connected. Otherwise, proceeding as in Case 2.1, Qn − Zn

6 is connected. Thus,
κðQn;C6Þ ≥ ⌈n3⌉. ,

Figure 4 illustrates the C6-structure connectivity of Q4. In Figure 4, the structure cut is
indicated with the dotted lines.

SinceQ3 is connected and by Lemma 3.3, κðQ3;C6Þ ≤ ⌈33⌉ ¼ 1, κðQ3;C6Þ ¼ 1 ¼ ⌈33⌉. Also,
by Lemma 3.3 and 3.6, we have the following result.

Theorem 3.7. For n ≥ 3, κsðQn;C6Þ ≤ κðQn;C6Þ ¼ ⌈n3⌉.
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Figure 4.
C6-structure cut of Q4.
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