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Abstract
Let X ⊂ ℙr be an integral and non-degenerate complex variety. For any q ∈ ℙr let rX ðqÞ be its X-rank and
SðX ; qÞ the set of all finite subsets of X such that jSj ¼ rX ðqÞ and q ∈ hSi, where h i denotes the linear span.
We consider the case jSðX ; qÞj > 1 (i.e. when q is notX -identifiable) and study the setW ðXÞq :¼ ∩S∈SðX ;qÞhSi,
which we call the non-uniqueness set of q. We study the case dim X ¼ 1 and the caseX a Veronese embedding
of ℙn. We conclude the paper with a few remarks concerning this problem over the reals.

Keywords X-rank, Veronese embedding, Symmetric tensor rank, Additive decomposition, Real X-rank

Paper type Original Article

1. Introduction
Let X ⊂ ℙr be an integral and non-degenerate variety defined over an algebraically closed
fieldKwith characteristic 0. For any setA⊂ ℙr let hAidenote its linear span. Fix any q ∈ ℙr.
TheX -rank rX ðqÞofX is the minimal cardinality of a finite set S ⊂ X such that q ∈ hSi. The
notion ofX-rank includes the notion of tensor rank of a tensor (takeX amulti projective space
andX ⊂ ℙr its Segre embedding) and the notion of additive decomposition of a homogeneous
polynomial or its symmetric tensor rank (take asX a projective space and asX ⊂ ℙr one of its
Veronese embeddings). See [3,13,18,19] for a long list of applications of these notions.

Notation 1. Let SðX ; qÞ denote the set of all S ⊂X such that jSj ¼ rX ðqÞ and q ∈ hSi.
Set W ðXÞq :¼ ∩S∈SðX ;qÞhSi.
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The set W ðXÞq is the main actor of this paper. We often write Wq if X is clear from the
context.

Remark 1. Note thatWq is a linear subspace of ℙr containing q and that ifWq ¼ fqg, and
SðX ; qÞ ¼ SðX ; q0Þ for some q0 ∈ ℙr, then q0 ¼ q. We will callWq the non-uniqueness set of q.
We have dim Wq ¼ rX ðqÞ− 1 if and only if hSi ¼ hS0i for all S; S0 ∈ SðX ; qÞ. In particular
Wq ¼ fqg and q ∉ X imply jSðX ; qÞj > 1:

In this paper we prove one result on the Veronese variety (i.e. on the additive
decomposition of homogeneous polynomials) (Theorem 3) and three results for the case
dim X ¼ 1 (Theorems 1 and 2 and Proposition 1). The proof of the result on the Veronese
variety uses one of the results for curves.

We first prove the following two cases (with X a curve) in which Wq ¼ fqg.
Theorem 1. Fix an even integer r ≥ 2 . Let X ⊂ ℙr be an integral and non-degenerate curve.
There is a non-empty Zariski open subset U ⊂ ℙr such that rX ðqÞ ¼ r=2þ 1 for all q ∈ U and
the following properties hold:

(a) We have fqg ¼ ∩S∈SðX ;qÞhSi for all q ∈ U.
(b) For all ðq; q0Þ ∈ U3 ℙr if SðX ; q0Þ ¼ SðX ; qÞ, then q0 ¼ q.

Theorem 2. Fix an integer d ≥ 2 and let X ⊂ ℙd be the rational normal curve. Take any
q ∈ ℙd such that SðX ; qÞ is not a singleton. ThenWq ¼ fqg . Moreover, if SðX ; qÞ ¼ SðX ; q0Þ
for some q0 ∈ ℙd , then q0 ¼ q.

Take a non-degenerate X ⊂ ℙr and q ∈ ℙr. For any integer t > 0 the t-secant variety
σtðXÞ of X is the closure inℙr of the union of all linear spaces hSiwith S ⊂ X and jSj ¼ t. The
border rank or border X-rank bX ðqÞ of q ∈ ℙr is the minimal integer b ≥ 1 such that
q ∈ σbðXÞ. We say that a finite set A ⊂ ℙr irredundantly spans q if q ∈ hAi and q ∉ hA0i for
any A0 =A. We use Theorem 2 to prove the following result for the order d Veronese
embedding of ℙn.

Theorem 3. Fix integers n; d; b; k , such that n ≥ 2, d ≥ 8, 4 ≤ 2b ≤ d and d þ 2− b ≤

k ≤ 2d− 2 . Let νd : ℙn → ℙr, r ¼
�
nþ d

n

�
− 1, be the orderd Veronese embedding. Let

L ⊂ ℙn be a line. Set Y :¼ νdðLÞ. Fix q0 ∈ hY i such that bY ðq0Þ ¼ b and rY ðq0Þ ¼ d þ 2− b:
Fix a general U ⊂ ℙn such that jU j ¼ k− d− 2þ b . Let q∈ ℙr be any point irredundantly
spanned by fq0g ∪ νdðUÞ. Then:

(1) rX ðqÞ ¼ k and SðX ; qÞ ⊇ fE ∪ UgE∈SðY ;q0Þ.

(2) If k ≤ 2d− 3, then SðX ; qÞ ¼ fE ∪ UgE∈SðY ;q0Þ and Wq ¼ hU ∪ fq0gi.

In Section 4 we consider the following problem. For any positive integer t let SðX ; q; tÞbe the
set of all S ⊂ X such that jSj ¼ t and S irredundantly spans q. We have SðX ; q; tÞ ¼ 0= for all
t < rX ðqÞ and SðX ; q; rX Þ ¼ SðX ; qÞ≠ 0=. By the definition of irredundantly spanning set we
have SðX ; q; tÞ ¼ 0= for all t ≥ r þ 2. Since X is integral and non-degenerate, for all ðX ; qÞwe
have SðX ; q; r þ 1Þ≠ 0= and SðX ; q; r þ 1Þ contains a general subset of X with cardinality
r þ 1. There are easy examples of triples ðX ; q; tÞ such that r > t > rX ðqÞ and SðX ; q; tÞ ¼ 0=
(Remark 3). It easy to check that SðX ; q; tÞ≠ 0= for all t such that r þ 1− dim X ≤ t ≤ r
(Lemma 2). Set W ðXÞq;t :¼ ∩S∈SðX ;q;tÞhSi, with the convention W ðXÞq;t :¼ ℙr if
SðX ; q; tÞ≠ 0=. We often write Wq;t instead of W ðXÞq;t.

In Section 4 we prove the following result.
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Proposition 1. Let X ⊂ ℙr, r ≥ 4, be an integral and non-degenerate curve. Then there exists
a non-empty Zariski open subset U of ℙr such that Wq;t ¼ fqg for all q ∈ U and
all bðr þ 2Þ=2c ≤ t ≤ r:

In Section 5we briefly discuss the case of real algebraic subvarieties of ℙrðℝÞ. In particular
we show that a statement similar to Theorem 1 overℝ is true if we take as U a non-zero open
subset of ℙrðℝÞ, for the euclidean topology (Theorem 4), but it fails if we ask for a non-empty
open subset of ℙrðℝÞ for the Zariski topology (Remark 5).

We thanks a referee for useful comments.

2. Preliminary observations
The cactus rank or cactus X-rank cX ðqÞ of q ∈ ℙr is the minimal degree of a zero-dimensional
scheme Z ⊂ X such that q ∈ hZi. LetZðX ; qÞdenote the set of all zero-dimensional schemes
Z ⊂ X such that degðZÞ ¼ cX ðqÞ and q ∈ hZi.
Remark 2. Let X ⊂ ℙd, d ≥ 2, be a degree d rational normal curve. We use [18, x1.3] and
[14] for the following observations. Fix q∈ ℙr.

(i)Wehave bX ðqÞ ¼ cX ðqÞ ([18, Lemma1.38]) and jZðX ; qÞj ¼ 1 ([18, Part (i) ofTheorem1.43]).
(ii) If cX ðqÞ < rX ðqÞ, then cX ðqÞ þ rX ðqÞ ¼ d þ 2 and SðX ; qÞ is infinite. Let Z be the only

element ofZðX ; qÞ, d þ 2− cX ðqÞ is theminimal degree of a schemeA ⊂ X such that q ∈ hAi
and A S Z .

(iii) If rX ðqÞ > cX ðqÞ, then fqg ¼ hZi∩ hSi;where fZg ¼ ZðX ; qÞ and S is any element of
SðX ; qÞ (this also follows from the fact that h1ðℙ1;LÞ ¼ 0 for any line bundle L on ℙ1 with
degðLÞ ≥ − 1, as in the proof of Claim 1).

(iv) then If rX ðqÞ > bX ðqÞ; then dim SðX ; qÞ ¼ d þ 3− 2b ([14, eq. (9)]).
(v) If d is odd and rX ðqÞ ¼ ðd þ 1Þ=2 (i.e. rX ðqÞ ¼ bX ðqÞ is the generic rank), then

SðX ; qÞ ¼ ZðX ; qÞ and jSðX ; qÞj ¼ 1 ([18, Theorem 1.43]).
(vi) Assume d even and rX ðqÞ ¼ d=2þ 1and so qhas the generic rank and bX ðqÞ ¼ rX ðqÞ,

but we do not assume that q is general in ℙd. Fix S; S0 ∈ SðX ; qÞ such that S ≠ S0:

Claim 1. hSi∩ hS0i ¼ fqg.
Proof of Claim 1. Since S ≠ S0 and S ∈ SðX ; qÞ, we have q ∉ hS ∩ S0i. The Grassmann’s
formula gives h1ðℙ1; IS∪S0 ðdÞÞ > 0. Since h1ðℙ1;LÞ ¼ 0 for any line bundle L on ℙ1 with
degðLÞ ≥ − 1 and q ∉ X, we have S ∩ S0 ¼ 0= and h1ðℙ1; IS∪S0 ðdÞÞ ¼ 1. Thus the
Grassmann’s formula implies dimðhSi∩ hS0iÞ ¼ 0, proving Claim 1.

Obviously Claim 1 impliesWq ¼ fqg in this case, which by [18, Part (i) of Theorem 1.43] is
the only case in which rX ðqÞ ¼ bX ðqÞ and ZðX ; qÞ is not a singleton.

Note that (iii) implies that each q ∈ ℙr with cX ðqÞ ≠ rX ðqÞ is uniquely determined by the
zero-dimensional scheme evincing its cactus rank and by one single set evincing its rank (any
S ∈ SðX ; qÞ would do the job). Obviously part (i) implies that most q ∈ ℙr (the ones with
rX ðqÞ ¼ bX ðqÞ ) are not uniquely determined by SðX ; qÞ. By parts (i) and (ii) for each q ∈ ℙr

such that rX ðqÞ ¼ bX ðqÞ there are exactly∞t, t :¼ rX ðqÞ− 1, points o ∈ ℙr with SðX ; oÞ ¼
SðX ; qÞ.

In the proof of Theorem 3 we use the following result ([5, Theorem 1], [4, Theorem 2]); we
use the assumption d ≥ 6 to have 4d− 5 ≥ 3d þ 1 and hence to apply a small part of [5,
Theorem 1].

Lemma 1 ([5, Theorem 1], [4, Theorem 2]). Fix an integer d ≥ 6 . Let S ⊂ ℙn, n ≥ 2, be a
finite set such that jSj ≤ 4d− 5 . We have h1ðISðdÞÞ > 0 if and only if there is F ⊆ S in one of
the following cases:
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(1) jFj ¼ d þ 1 and F is contained in a line;

(2) jFj ¼ 2d þ 2 and F is contained in a reduced conic D ; if D ¼ L1 ∪ L2 with each Li a
line we have L1 ∩L2 ∉F and jF ∩L1j ¼ jF ∩L2j ¼ d þ 1;

(3) jFj ¼ 3d, F is contained in the smooth part of a reduced plane cubic C and F is the
complete intersection of C and a degree d hypersurface;

(4) jFj ¼ 3d þ 1 and F is contained in a plane cubic.

3. Proofs of Theorems 1–3

Proof of Theorem 1. To prove part (b) it is sufficient to prove part (a), because
SðX ; q0Þ ¼ SðX ; qÞ implies fq0g ⊆ Wq0 ¼ Wq and Wq ¼ fqg for q ∈ U.

Since part (a) is trivial in the case r ¼ 2, we assume r ≥ 4. Since no non-degenerate curve is
defective ([23, Corollary 1.5 andRemark 1.6]), there is a non-empty Zariski open subsetV ⊂ ℙr

such that rX ðqÞ ¼ r=2þ 1 and dim SðX ; qÞ ¼ 1 for all q∈V.
For each set S ⊂ X such that jSj ¼ r=2þ 1 and dimhSi ¼ r=2 let ‘S : ℙr nhSi → ℙr=2−1

denote the linear projection from hSi. For a general S we have hSi∩X ¼ S (scheme-
theoretically) by Bertini’s theorem and the trisecant lemma ([24, Corollary 2.2]) and ‘SjXnS is
birational onto its image, again by the trisecant lemma and the assumption r ≥ 4.

Fix a general S ⊂ X such that jSj ¼ r=2þ 1. LetXS ⊂ ℙr=2−1 be the closure of ‘SðXnSÞ in
ℙr=2−1. There is a finite setE ⊂XS containingXS n ‘SðX n SÞand such that for each p∈XS nE
there is a unique o ∈ X nS such that ‘SðoÞ ¼ p. For any setA ⊂ XSnE letAS ⊂ X n S denote
the only set such that ‘SðASÞ ¼ A. Any general A ⊂ XS nE such that jAj ¼ r=2þ 1 is
linearly dependent, but each proper subset of A is linearly independent. Thus hSi∩ hASi is a
single point, qS; A, and qS; A ∉ hBi for any B = AS. For a general Awe get as AS a general
subset ofX with cardinality r=2þ 1. Thus for a generalAwe have qS; A ∉ S0 for any S0 = S.
We start with S ∈ SðX ; oÞ for a general o ∈ ℙr. Thus rX ðqÞ ¼ r=2þ 1 for a general
q ∈ hSi. Thus for a general Awe get S ∈ SðqS;AÞ and AS ∈ SðqS;AÞ. By construction we
have fqS;Ag ¼ hSi∩ hASi. For a generalA the point qS;A is general in hSi. By the generality of S
we get that the points qS;A ’s (with ðS;AÞ varying, but general), cover a non-empty Zariski
open subset of ℙr. ,

Proof of Theorem 2. Set b :¼ bX ðqÞ. Since SðX ; qÞ is not a singleton, we have q∉X and
hence b ≥ 2. Part (vi) of Remark 2 covers the case rX ðqÞ ¼ b and hence we may assume
rX ðqÞ > b. Thus rX ðqÞ ¼ d þ 2− b. By part (v) of Remark 2 we have SðX ; qÞ ≥ 2. We will
prove the stronger assumption that fqg ¼ ∩A∈ΓhAi, where Γ is any irreducible family
contained in SðX ; qÞ and with dim Γ ¼ d þ 3− 2b; we do not assume that Γ is closed
in SðX ; qÞ.

(a) First assume b ¼ 2. We use the proof of [20, Proposition 5.1]. Fix a ∈ ℙdnfqg. Let
H ⊂ ℙd be a general hyperplane containing q. Since q ∉ X, Bertini’s and Bezout’s theorems
give that X ∩ H is formed by d distinct points. Since X is connected, the exact sequence

0→ IX →IX ð1Þ→IX∩H ;H ð1Þ→ 0

gives thatX ∩ H spansH. Thus q ∈ hX ∩ Hi. Since rX ðqÞ ¼ d, we getX ∩ H ∈ SðX ; qÞ.
The generality of H gives a ∉ H, concluding the proof that Wq ¼ fqg.

(b) Step (a) and part (i) (resp. part (vi)) of Remark 2 for the case d odd (resp. d even) and q
with generic rank cover all cases with d ≤ 4. Thus we may assume d ≥ 5 and use induction

on d. Fix a general o ∈ X. Let ‘o : ℙd n fog→ ℙd−1 denote the linear projection from o. Let
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Y ⊂ℙd−1 denote the closure of ‘oðX n fogÞ in ℙd−1. Y is a rational normal curve of ℙd−1. Set
q0 :¼ ‘oðqÞ and Z 0 :¼ ‘oðZÞ (by the generality of o we have o ∉ hZi and hence Z 0 is well-
defined, degðZ 0Þ ¼ b and dimhZ 0i ¼ b− 1 ). The generality of o also implies that

q∉ hZ 00∪ fogi for any Z
00
= Z (here we use that X is a smooth curve and hence Z has only

finitely many subschemes). Thus q0 ∈ hZ 0i and q0 ∉ hZ 00 i for all Z 00
= Z 0. Since Y is a degree

d− 1 rational normal curve and b ≤ d=2, parts (i) and (ii) of Remark 2 imply bY ðq0Þ ¼ b and
ZðY ; q0Þ ¼ fZ 0g. Fix an irreducible family Γ ⊆SðX ; qÞ such that dim Γ ¼ d þ 3− 2b (it
exists by part (v) of Remark 2). Let B denote the set of allA∈Γ such that o ∈A. By part (v) of
Remark 2 and the generality of o we have B≠ 0 and dim B ¼ d þ 2− 2b. Set
A :¼ f‘oðB n fogÞgB∈B. Since Y is a rational normal curve, parts (i) and (ii) of Remark 2
imply A ⊆ SðY ; q0Þ. We have dim A ¼ ðd− 1Þ þ 3− 2b. The inductive assumption gives
fq0g ¼ ∩A∈AhAi. Thus hfo; qgi ¼ ∩ B∈BhBi. Since dim Γ ¼ dim SðX ; qÞ ¼ d þ 3− 2b
(part (v) of Remark 2) and o is general in X, there is S ∈Γ such that o∉ S.
Thus ∩ A∈ΓhAi ¼ fqg. ,

Proof of Theorem3. ByAutarky ([19, Exercise 3.2.2.2]) we may assumeU ≠ 0=. SinceU is
general in ℙn, we have dim hνdðUÞ ∪ Y i ¼ minfr; dimhY i þ jU jg. Since dim hY i ¼ d and
d þ jU j < r, we have hνdðUÞi∩ hY i ¼ 0=. By Theorem 2 we have W ðY Þq0 ¼ fq0g. Take
E ∈ SðY ; q0Þ and set A :¼ U ∪ E. The set fq0g ∪ U irredundantly spans q and
hY i∩ hνdðUÞi ¼ 0=. Hence we have E ∩ U ¼ 0= and jAj ¼ k. Since jAj ¼ k and q ∈

hνdðAÞi, we have rX ðqÞ ≤ k. Since U is general in ℙn, we have h0ðIAðtÞÞ ¼ maxf0; h0ðIE

ðtÞÞ− jU jg for all t ∈ ℕ ; to use this equality we need to fix one element,E, of SðY ; q0Þ, before
choosing a general U.

Note that we haveWq ¼ hνdðUÞ ∪ fq0gi for any q such that SðX ; qÞ ¼ fE ∪ UgE∈SðY;q0Þ
by Theorem 2. Assume either rX ðqÞ < k or k ≤ 2d− 3 and the existence of B∈SðX ; qÞn
fE ∪ UgE∈SðY ;q0Þ. In the former case take B ∈ SðX ; qÞ. Set S :¼ A ∪ B. In both cases we

have jBj ≤ jAj and jAj þ jBj ≤ 4d− 5. Since h1ðISðdÞÞ > 0 ([6, Lemma 1]) there is F ⊆ S in
one of the cases listed in Lemma 1.

(a) Assume the existence of a plane cubic T ⊂ ℙn such that jT ∩ Sj ≥ 3d.
(a1) Assume n ¼ 2. Thus T is an effective divisor of ℙ2. Consider the residual exact

sequence of T in ℙ2:

0→ I SnS∩Tðd � 3Þ→ I SðdÞ→I S∩T;TðdÞ→ 0 (1)

Since jS n S ∩ Tj ≤ 4d− 5− 3d ¼ d− 5, we have h1ðISnS ∩Tðd− 3ÞÞ ¼ 0. Thus either [7,
Lemma 5.1] or [8, Lemmas 2.4 and 2.5] give A n A ∩ T ¼ B n B ∩ T. Assume for the
moment L?T. Bezout gives jL∩Tj ≤ 3. Since U is general and h0ðOℙ2ð3ÞÞ ¼ 10, we have
jU ∩Tj ≤ 9. Thus jB ∩Tj ≥ 3d− 12 > 12 ≥ jT ∩ Ajand hence jBj > jAj, a contradiction.
Now assume L ⊂ T. Since h0ðOℙ2ð2ÞÞ ¼ 6 andU ∩L ¼ 0=, we get jA ∩ Tj ≤ dþ 8− b. Thus
jB∩Tj ≥ 2d− 5þ b and again jBj > jAj, a contradiction.

(a2) Assume n > 2. Let M ⊂ℙn be a general hyperplane containing the plane hTi (so
M ¼ hTi if n ¼ 3 ). Since S is a finite set andM is a general hyperplane containing hTi, we
have S ∩ M ¼ S ∩ hTi. Consider the residual exact sequence of M in ℙn:

0→ ISnS∩Mðd � 1Þ→ I SðdÞ→ IS∩M ;M ðdÞ→ 0 (2)

Since jS n A ∩ M j ≤ 4d− 5− 3d ¼ d− 5, we have h1ðISnS ∩M ðd− 1ÞÞ ¼ 0. Thus either
[7, Lemma 5.1] or [8, Lemmas 2.4 and 2.5] give A n A ∩ M ¼ B n B ∩ M. Since no 4 points
of U are coplanar, we have jA ∩ M j ≤ d þ 5− b < 3d− d− 2þ b. Thus jBj > jAj, a
contradiction.
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(b) Assume the existence of a plane conic D such that jS ∩Dj ≥ 2d þ 2.
(b1) Assume n ¼ 2. Consider the residual exact sequence of D in ℙ2:

0 → ISnS ∩Dðd � 2Þ→ ISðdÞ→ I S ∩D;DðdÞ→ 0 (3)

First assume h1ðISnS∩Dðd− 2ÞÞ > 0. Since jS n S ∩ Dj ≤ 4d− 5− 2d− 2 ¼ 2ðd− 3Þ− 1,
there is a line R⊂ℙ2 such that jR ∩ ðS n S ∩ DÞj ≥ d− 1 ([9, Lemma 34]). Thus
jS ∩ ðD ∪ RÞj ≥ 3d þ 1. Step (a1) gives a contradiction. Now assume h1ðISnS ∩ D

ðd− 2ÞÞ ¼ 0. Either [7, Lemma 5.1] or [8, Lemmas 2.4 and 2.5] give AnA∩D ¼ BnB∩D.
Assume for the moment L ? D. Thus jL ∩ Dj ≤ 2. Since U is general and h0ðOℙ2ð2ÞÞ ¼ 6,
we have jU ∩Dj ≤ 5. Thus jB∩Dj > jA∩Dj and so jBj > jAj, a contradiction. Now assume
L⊂D. WriteD ¼ L ∪ R withRa line. Set fog :¼ L ∩ R. SinceU ∩ L ¼ 0=, jL ∩ Rj ¼ 1and
jU ∩Rj0 ≤ 2for each lineR0, we have jA∩Dj ≤ d þ 4− b. Let Z 0 ⊂Lbe the only degree bzero-
dimensional scheme evincing the cactus rank of q0 with respect to the rational normal curve

νdðLÞ (part (i) of Remark 2). Set Z
00
:¼ Z 0 ∪U and Z :¼ Z

00∪ B. SinceAnA∩D ¼ BnB∩D, we

have Z ¼ Z 0 ∪ ðU ∩RÞ ∪ ðB∩DÞ ∪ ðU nU ∩DÞ. Since q0 ∈ hνdðZ 0Þi, wehave q∈ hνdðZ 00 Þi∩
hνdðBÞi. Thus h1ðIZ ðdÞÞ > 0. Since h1ðIUnS∩Dðd− 2ÞÞ ¼ h1ðISnS∩Dðd− 2ÞÞ ¼ 0, the residual

sequence (3) ofD in ℙ2 with Z instead of S gives h1ðD; IZ∩D;DðdÞÞ > 0. SinceD ¼ R ∪ L, using

either [16, Corollaire 2] or the residual exact sequences ofR andL in ℙ2 we get that we are in one
of the following cases:

(1) degðZ ∩ LÞ ≥ d þ 2;

(2) degðZ ∩ RÞ ≥ d þ 2;

(3) degðZ ∩ RÞ ¼ degðZ ∩ LÞ ¼ d þ 1 and o ∉ Zred.

Recall that A n A ∩ B ¼ B n B ∩ D (and hence) jB∩Dj ≤ jA∩Dj and that jA∩Dj ≤
d þ 4− b.

(b1.1)AssumedegðZ ∩LÞ ≥ d þ 2. SinceZ ∩L ¼ Z 0 ∪ ðB∩LÞ, we get jB∩Lj ≥ d þ b − 2.
Consider the residual exact sequence of L in ℙ2:

0→ I SnS∩Lðd � 1Þ→ ISðdÞ→ IS∩L;LðdÞ→ 0 (4)

First assume h1ðISnS ∩Lðd− 1ÞÞ > 0. Since h1ðISnS ∩ ðR∪LÞðd− 2ÞÞ ¼ 0, the residual exact
sequence of R gives h1ðR; IS ∩RnS ∩R∩ Lðd− 1ÞÞ > 0. Thus jS ∩R n S ∩ fogj ≥ d þ 1. Since
jU ∩Rj ≤ 2, we get jB∩R nB∩ fogj ≥ d− 1 and hence jBj > jAj (because d ≥ 5), a
contradiction.

Now assume h1ðISnS∩Lðd− 1ÞÞ ¼ 0. By [7, Lemma 5.1] or [8, Lemmas 2.4 and 2.5] we get
A nA∩L ¼ B n B ∩ L. Since jB ∩ Lj ≥ d þ 2− b ¼ jA ∩ Lj, we get jB ∩ Lj ¼ d þ 2− b. In
this case part (1) of Theorem 3 is proved. To prove part (2) we need to prove that
B ∩ L ∈ SðY ; q0Þ. Since jB ∩ Lj ¼ d þ 2− b and degðZ ∩ LÞ ≥ d þ 2, we get Z1 ∩ B ¼ 0=

and degðZ ∩BÞ ¼ d þ 2. Thus hνdðB∩LÞi∩ hνdðZ 0Þi is a single point, q
00
, and B∩L

∈SðY ; q
00 Þ. Since U is general, and jU j ≤

�
d þ 2
2

�
− d, we have hνdðUÞi∩ hνdðLÞi ¼ 0=.

Since B n B∩L ¼ A n A∩L ¼ U, we get q
00 ¼ q0, proving part (2) in this case.

(b1.2) Assume degðZ ∩RÞ ¼ deg ðZ ∩LÞ ¼ d þ 1and o∉ Zred (i.e. o∉ Z 0
red). Since degðZ 0Þ ¼ b

and degðZ 00 ∩ DÞ ¼ bþ jU ∩Rj ≤ bþ 2, we get jL ∩ Bj ≥ d þ 1− b, jR ∩ Bj ≥ d− 1 and
o ∉ B. Thus jB ∩ Dj ≥ 2d þ 2− b. Since jB ∩ Dj ≤ jA ∩ Dj ≤ d þ 4− b, we obtain a
contradiction.

(b1.3) Assume degðZ ∩ RÞ ≥ d þ 2. Since jU ∩ Rj ≤ 2 with strict inequality if o∈ Z 0
red

and every point of hνdðRÞi has rank ≤ d by Sylvester’s theorem, we get jU ∩Rj þ
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degðZ 0 ∩ RÞ ¼ 2, jB ∩ Rj ¼ d and U ∩ B ∩ R ¼ 0=. If h1ðISnS ∩Rðd− 1ÞÞ ¼ 0, we have
A n A∩R ¼ B n B ∩ R by [7, Lemma 5.1] or [8, Lemmas 2.4 and 2.5] and hence jBj > jAj, a
contradiction. Now assume h1ðISnS∩Rðd− 1ÞÞ > 0. Since h1ðISnS∩Dðd− 2ÞÞ ¼ 0 in this part

of the proof, the residual exact sequence of L gives h1ðL; IL∩ SnL∩S∩Rðd− 1ÞÞ > 0 and hence
jS ∩ ðLnL∩RÞj ≥ d þ 1. Thus jB∩ ðL n L∩RÞj ≥ b− 1. We get jB∩Dj ≥ d þ b− 1. Since
AnA∩D ¼ B n B∩D ¼ U n U ∩D, we get d þ b− 1 ≤ d þ 4− b and hence b ¼ 2 and
jB∩Lj ≤ 2. Since jU ∩Rj þ degðZ 0 ∩RÞ ≥ 2 and q0 uniquely determines Z 0, R is uniquely
determined by Z 0 and the set jR ∩U j. If o∈ Z 0

reg R is uniquely determined by q0 and one point
ofR nfog. Since we took a generalU after fixing q0, we have jU ∩Rj ≤ 1 ifR∩L∈ Z 0

reg. Hence

(varying the points ofU nU ∩R (ifU ?R ) wemay (after fixing q0 ) assume thatU n U ∩R is

general inℙn n D. SinceA n A∩D ¼ B n B∩D ¼ U nU ∩ D, jU n U ∩Dj ≤
�
d þ 2
2

�
− 2d

− 1 and U n U ∩D is general, we have hνdðU nU ∩DÞi∩ hνdðDÞi. Thus there is a unique

q
00
∈ hνdðDÞi such that q ∈ hfνdðU nU ∩RÞ; q00 gi. We have q

00
∈ hνdðA∩DÞi∩ h νdðB∩DÞi

∩ hfq0; νd ðU ∩RÞgi. Thus is it sufficient to prove parts (1) and (2) of the theorem for q
00
,A∩D

and B∩D instead of q, A and B, i.e. in the rest of this step we assume U ¼ U ∩R. Since
jBj ≤ jAj, we have jB∩Lj ≤ 2. Thus h1ðIZ 0∪ðL∩BÞðd− 1ÞÞ ¼ 0. if o∉ Z 0

red ∩B, [7, Lemma 5.1]
gives a contradiction, because Z 0 ? B. Now assume o∈ Z 0

red ∩B. Since o∈ Z 0
red and Z 0 is

uniquely determined by q0, we observed that jU ∩Rj ≤ 1. Thus (under the assumption
U ⊂ D), we have jU j ≤ 1. Since jB∩Rj ¼ d;o ¼ L ∩ R ∈ B by assumption and Z 0 ? R,
we get degðZ ∩RÞ ≤ d þ 1, a contradiction.

(b2) Assume n > 2. Let M ⊂ ℙn be a general hyperplane containing the plane hDi. Thus
S ∩ M ¼ S ∩ hDi. Since U is general, no 4 points of U are coplanar. Thus jU ∩M j ¼
jU ∩ hDij ≤ 3.

(b2.1) Assume h1ðISnS∩M ðd− 1ÞÞ > 0. Since jS n S ∩M j ≤ jAj þ jBj− 2d− 2 ≤

2ðd− 1Þ þ 1, there is a line R0 ⊂ ℙn such that jR0 ∩ ðS n S ∩MÞj ≥ d þ 1. If R0 ⊂ hDi, then
R0 ∪ D is a plane cubic and we may apply step (a1). Thus we may assume R0 ? hDi. Let
N ⊂ ℙn be a general hyperplane containingN. Since S is a finite set, the generality ofM andN
gives S ∩ ðM ∪ NÞ ¼ S ∩ ðD ∪ R0Þ. Consider the residual exact sequence

0→ ISnS ∩ ðM∪NÞðd � 2Þ→I SðdÞ→ IS ∩ ðM∪NÞ;M∪N ðdÞ→ 0 (5)

ofM ∪ N inℙn. Since jS n S ∩ ðM ∪ NÞj ≤ jAj þ jBj− 3d− 3 ≤ d− 1,we have h1ðISnS∩ðM∪NÞ
ðd− 2ÞÞ ¼ 0. Thus either [7, Lemma 5.1] or [8, Lemmas 2.4 and 2.5] give A n A ∩ ðM ∪ NÞ ¼
B n B∩ ðM ∪ NÞ. We have A∩ ðM ∪ NÞ⊆E ∪ ðU ∩ ðM ∪ NÞÞ and hence jA n A ∩ ðM ∪
NÞj ≥ k− d− 2þ b− 5. Since jA∩ ðM ∪NÞj ≤ d þ 7− b, we get jB ∩ ðM ∪ NÞj ≥ 3d þ 3−
d− 7þ b ¼ 2d− 4þ b. Since jB n B∩ ðM ∪ NÞj ≥ k− d − 2þ b− 5, we get a contradiction.

(b2.2) Assume h1ðISnS∩M ðd− 1ÞÞ ¼ 0. Either [7, Lemma 5.1] or [8, Lemmas 2.4 and 2.5]
give A n A∩M ¼ B n B∩M. Since jU ∩M j ¼ jU ∩ hDij ≤ 3, we have jU n U ∩M j ≥ k− d− 5
þ b. Assume for the moment L?hDi. We get jE ∩M j ≤ 1 and hence jA n A∩M j ≥ k− 4.
SinceA n A∩M ¼ B n B∩M, we get jS ∩M j ≤ jAj þ jBj− 2k− 8 and hence 2d þ 2 ≤ 8, a
contradiction. Now assume L⊂ hDi. If L ? D we get (since jL∩Dj ≤ 2 ) jS ∩M j ≥ 3d þ b.
Since A n A ∩ M ¼ B n B∩M and jU n U ∩M j ≥ k− d− 1þ b, we get jSj ≥ 2d þ 2b
þ k− 1, a contradiction.

(c) Assume the existence of a lineR⊂ ℙn such that jR ∩ Sj ≥ d þ 2. LetM ⊂ ℙn be a general
hyperplane containing R (so M ¼ R if n ¼ 2 ). Since S is a finite set and M is a general
hyperplane containing R, we have M ∩ S ¼ R∩ S. Since U is a general subset of ℙn with
cardinality k− d− 2þ b, no 3 of its points are collinear (and hence jU ∩Rj ≤ 2) and
U ∩L ¼ 0=. LetM ⊂ ℙn be a general hyperplane containingR (soM ¼ R if n ¼ 2 ). Since S is a
finite set and M is a general hyperplane containing R, we have M ∩ S ¼ R ∩ S.
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(c1) Assume h1ðISnS∩M ðd− 1ÞÞ > 0. Since jS n S ∩ M j ≤ jAj þ jBj− d− 2 ≤ 3ðd− 1Þ− 1,
either there is a line R1 such that jR1 ∩ ðS nS ∩ MÞj ≥ d þ 1 or there is a conic D1 such that
jD1 ∩ ðS n S ∩ MÞj ≥ 2d. If R and R1 (resp. R and D1) are contained in a plane, and in
particular if n ¼ 2, step (b) (resp. step (a)) gives a contradiction, because
jS ∩ ðR ∪ R1Þj ≥ 2d þ 3 (resp. jS∩ðR ∪ D1Þj ≥ 3d þ 2). Thus we may assume that this is
not the case and in particular we may assume n > 2. Let N be a general hyperplane
containing R1 (resp. D1). We use the residual exact sequence (5). Note that
S ∩ ðM ∪NÞ ¼ S ∩ ðR∪R1Þ (resp. S ∩ ðM ∪NÞ ¼ S ∩ ðR∪ hD1iÞ.

(c1.1) Assume h1ðISnS∩ðM∪NÞðd− 2ÞÞ > 0. We exclude the existence of D1, because
jS ∩ ðR ∪ D1Þj ≥ 3d þ 2 and hence jSnS ∩ ðM ∪ NÞj ≤ d− 1. Thus in this case we may
assume the existence of R1. Since jS ∩ ðR∪R1Þj ≥ 2d þ 3, we have jS n S ∩ ðM ∪NÞj ≤
jAj þ jBj− 2d− 3 ≤ 2ðd− 2Þ þ 1. By [9, Lemma 34] there is a line R2 such that
jR2 ∩ S n S ∩ ðM ∪NÞj ≥ d. Let M 0 be a general hyperplane containing R2. Consider the
residual exact sequence of M 0 ∪ M ∪ N. We have h1ðISnS ∩ðM∪N∪M 0Þðd− 3ÞÞ ¼ 0, because
jS n S ∩ ðM ∪ N ∪ M 0Þj ≤ 2k− d− 2− d− 1− d ≤ d− 4. Either [7, Lemma 5.1] or [8,
Lemmas 2.4 and 2.5] give A n A ∩ ðM ∪ N ∪ M 0Þ ¼ B n B∩ ðM ∪ N ∪ M 0Þ. Since M, N
andM 0 are general, we have S ∩ ðM ∪ N ∪ M 0Þ ¼ S ∩ ðR ∪ R1 ∪ R2Þ. SinceU is general, no
3 of the points ofU are collinear. Thus jU ∩ ðR ∪ R1 ∪ R2Þj ≤ 6. Hence jAnA∩ ðM ∪ N ∪ M 0Þj
≥ k− d− 8þ b. Since A n A∩ ðM ∪ N ∪ M 0Þ ¼ B n B∩ ðM ∪ N ∪ M 0Þ, we get jS ∩ ðM ∪
N ∪ M 0Þj ≤ 2k− 2kþ 2d þ 16− 2b. Hence 2d þ 16− 2b ≥ 3d þ 3, a contradiction.

(c1.2) Assume h1ðISnS ∩ ðM∪ NÞðd− 2ÞÞ ¼ 0. Either [7, Lemma 5.1] or [8, Lemmas 2.4 and
2.5] give A n A∩ ðM ∪ NÞ ¼ B n B∩ ðM ∪ NÞ. Since U ∩ ðM ∪ NÞ ¼ U ∩ ðR ∪ R1Þ, we
have jU nU ∩ ðM ∪ NÞj ≥ k− d− 6þ b. Assume for the moment L ∉ fR ;R1g. We get jL∩
ðM ∪ NÞj ≤ 2. Thus jA n A∩ ðM ∪ NÞj ≥ kþ b− 8. Since A n A∩ ðM ∪ NÞ ¼ B n B∩
ðM ∪ NÞ, we get jS ∩ ðM ∪ NÞj ≤ 16− b < 2d þ 3 (even when instead of jSj we take 2k ).
Thuswemay assume that eitherL ¼ RorL ¼ R0. In both cases, writingD :¼ R ∪R0we are in
the case solved in step (b1).

(c2) Assume h1ðISnS ∩ M ðd− 1ÞÞ ¼ 0. Either [7, Lemma 5.1] or [8, Lemmas 2.4 and 2.5]
give A n A∩M ¼ B n B∩M.

(c2.1) Assume R ¼ L. We get U ¼ A n A∩L ¼ B n B∩L. Thus B ¼ U ∪ ðB∩LÞ. Since
hνdðUÞi ∩ hY i ¼ 0=, q∈ hvdðUÞ∪Y i, q ∉ hνdðUÞi; q∉ hνdðY Þi (because U ≠ 0=) and hνdðUÞi∩
hY i ¼ 0=, there are uniquely determined q1 ∈ hνdðUÞi and q2 ∈ hY i such that q ∈ hfq1; q2gi.
The uniqueness of q2 gives q2 ¼ q0. Since hνdðUÞi∩ hY i ¼ 0= and q∈ hνdðAÞi∩ hνdðBÞi;we
get q0 ∈ hνdðB ∩ LÞi. Thus jB ∩ Lj ≥ rY ðq0Þ ¼ jA ∩ Lj. Since jBj ≤ jAj and A nA ∩ L ¼
B nB ∩ L, we get jBj ¼ jAj and B ¼ U ∪ F with F ∩ U ¼ 0= and F ∈ SðY ; q0Þ. Thus the
theorem is true in this case.

(c2.2) Assume R ≠ L. Since jL ∩ Rj ≤ 1, we get jE ∩ Rj ≤ 1. Since jU ∩ Rj ≤ 2, we get
jA ∩ Rj ≤ 3 and hence jB ∩ Rj ≥ d− 1 > jA ∩ Rj. Since A nA ∩ R ¼ B nB ∩ R, we get
jBj > jAj, a contradiction. ,

4. Irredundantly spanning sets

Lemma 2. If r þ 1− dim X ≤ t ≤ r, then SðX ; q; tÞ≠ 0= .

Proof. The case t ¼ r þ 1− dim X is an obvious consequence of the proof of [20, Proposition
5.1]. Assume r þ 2− dim X ≤ t ≤ r. Let Y ⊂ ℙr be the intersection of X and ðt þ dim X −

r− 1Þ general quadric hypersurfaces. By Bertini’s theorem Y is an integral and non-
degenerate subvariety of ℙr. Thus for any q we have SðX ; q; tÞ ⊇ SðY ; q; tÞ. Since
t ¼ r þ 1− dim Y , we get SðY ; q; tÞ≠ 0=. ,
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Remark 3. LetX ⊂ ℙd, d ≥ 4, be a rational normal curve. Fix q ∈ ℙd such that rX ðqÞ ¼ 2.
Since any subset of X with cardinality at most d þ 1 is linearly independent, the definition of
irredundantly spanning set gives SðX ; q; tÞ ¼ 0= for all t such that 3 ≤ t ≤ d− 1.

Proof of Proposition 1. Since a finite intersection of non-empty Zariski open subsets of ℙr

is open and non-empty and the interval bðr þ 2Þ=2c ≤ t ≤ r contains only finitely many
integers, it is sufficient to prove the statement for a fixed t. The case t ¼ r is true by Remark 3.
The case r even and t ¼ r=2þ 1 is true by Theorem 2. Thus when r is even we may assume
r=2þ 2 ≤ t ≤ r. Since we saw that the case r ¼ t is always true, we proved the proposition
for r ¼ 4. Thus wemay assume r ≥ 5and that the proposition is true for all curves in a lower
dimensional projective space. Fix a general p ∈ X and call ‘ : ℙr n fpg→ ℙr−1 the linear
projection from p. Let Y ⊂ ℙr−1 be the closure of ‘ðX n fpgÞ in ℙr−1. Y is an integral and non-
degenerate curve. Since p is general inX, it is a smooth point ofX and hence ‘jXnfpg extends to
a surjective morphism μ : X →Y with μðpÞ associated to the tangent line of X at p. Thus
Y ¼ μðXÞ. By the trisecant lemma ([24, Corollary 2.2]) and the generality of p we have
deg ðL∩XÞ ≤ 2 for every line L⊂ ℙr such that p∈L. Hence ‘jXnfpg is birational onto its image
and there is a finite set F ⊂X containing p such that μjXnF induces an isomorphism between

X nF and Y n μðFÞ. Fix the integer t such that bðr þ 2Þ=2c ≤ t ≤ r and write z :¼ t − 1. By
the inductive assumption and, if r is odd and t ¼ bðr þ 2Þ=2c, Theorem 2 applied to the
projective space ℙr−1 there is a non-empty Zariski open subset V of ℙr−1 such that
W ðY Þq;z ¼ fqg for all q∈V. Fix a∈V and finitely many Si ∈SðY ; a; zÞ, 1 ≤ i ≤ e, such that

fag ¼ ∩e
i¼1hSii. Restricting if necessary V we may assume that (for a choice of sufficiently

general S1ðaÞ; . . . ; SeðaÞ) we have SiðaÞ∩ μðFÞ ¼ 0= for all i and all a. Hence there is a unique
AiðaÞ⊂X nF such that μðAiðaÞÞ ¼ SiðaÞ. Since p∈F,BiðaÞ :¼ AiðaÞ ∪ fpghas cardinality t,
1 ≤ i ≤ e. Set Up :¼ ‘−1ðVÞ⊂ ℙr n fpg. For each a∈V, set La :¼ fpg∪ ‘−1ðaÞ. Each La is a
line containing p, Up is the union of all Lanfpg, a ∈ V, and La ¼ ∩e

i¼1hBiðaÞi. Fix a∈V and
b∈La n fpg. Note that each BiðaÞ irredundantly spans b. Fix another general o∈X, o≠ p. We
get in the similar way a setUo. It is easy to check thatWq;t ¼ fqg for all q∈U0 ∩ Up. Thus we
may take U ¼ Up ∩ U0. ,

5. Real varieties and real ranks
Up to now we worked over an algebraically closed field K with characteristic zero. In this
section we takeK ¼ ℂ, but we consider varieties X ⊂ ℙr defined overℝ. Not only we fix the
real structure ofX but we assume that the embeddingX ↪ ℙr is defined overℝ.We callXðℂÞ
and ℙrðℝÞ the set of all complex points of X and ℙr. For any q∈ ℙrðℂÞwe have defined the X
-rank rX ðqÞ and the set SðX ; qÞ. In this section we write rXðℂÞðqÞ instead of rX ðqÞ and
SðXðℂÞ; qÞ instead ofSðX ; qÞ. SinceX is defined overℝ, the setXðℝÞof its real points is well-
defined. Since the embedding X ↪ ℙr is defined over ℝ, we have XðℝÞ ¼ XðℂÞ∩ ℙrðℝÞ.
Easy examples show that a nice X defined overℝmay have XðℝÞ ¼ 0=. For instance take the
smooth plane conic C :¼ fx20 þ x21 þ x23 ¼ 0g (we have CðℂÞ ≅ ℙ1ðℂÞ). Felix Klein proved
that for every integer g ≥ 0 there is a smooth curve XðℂÞ of genus g defined overℝ and with
XðℝÞ ¼ 0= ([17, Proposition 3.1]). Thus the assumption that XðℝÞ is large is necessary. We
assume that X has a smooth point defined over ℝ (in symbols, we assume XregðℝÞ≠ 0= ). Set
n :¼ dimX ¼ dimℂ XðℂÞ. The sets ℙrðℂÞandXðℂÞalso have a euclidean topology.With the
euclidean topologyXregðℝÞ is a topological (and C∞ ) manifold with pure dimension nand the
assumptionXregðℝÞ≠ 0=says that thismanifold is non-empty. The assumptionXregðℝÞ≠ 0= is
equivalent to assuming thatXðℝÞ is Zariski dense inXðℂÞ, because SingðXðℂÞÞ is a union of
complex varieties of dimension < n. For any set S ⊂ ℙrðℂÞ let hSiℂ be the complex linear
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projective subspace of ℙrðℂÞ spanned by S, i.e. the linear space that in the previous sections
we called hSi. For any S ⊂ ℙrðℝÞ we write hSiℝ for the minimal real projective subspace of
ℙrðℝÞ containing S. Since S ⊂ ℙrðℝÞwe have hSiℝ ¼ hSiℂ ∩ ℙrðℝÞ. Since XðℝÞ ¼ XðℂÞ∩
ℙrðℝÞ, XðℝÞ is Zariski dense in XðℂÞ and XðℂÞ spans ℙrðℝÞ. Thus for each q∈ ℙrðℝÞ the
XðℝÞ-rank (i.e. the minimal cardinality of a set S ⊂XðℝÞ such that q∈ hSiℝ ) is a well-defined
integer. For any q∈ ℙrðℝÞ let SðXðℝÞ; qÞ denote the set of all S ⊂ X ðℝÞ such that q∈ hSiℝ
and jSj ¼ rXðℝÞðqÞ. The interested readermay find the definition of a real semialgebraic set in
[12, x2.1]. The set SðXðℝÞ; qÞ is semialgebraic ([12, Proposition 2.2.7]). Set

WqðXðℝÞÞ :¼ ∩S∈SðXðℝÞ;qÞhSiℝ:

We always have rXðℝÞðqÞ ≥ rXðℂÞðqÞ and in many cases the inequality is strict. For instance,

when X ⊂ ℙd, d ≥ 3, is a degree d rational normal curve for each integer t such that
bðd þ 2Þ=2c < t ≤ d there is q∈ ℙrðℝÞ such that rXðℂÞðqÞ ¼ bðd þ 2Þ=2c and rXðℝÞðqÞ ¼ t

[10,15]. See [11] for definitions and many examples when XðℂÞ is a smooth curve and
[1,2,21,22] for tensors and symmetric tensors. When rXðℝÞðqÞ ¼ rXðℂÞðqÞ we have
SðXðℝÞ; qÞ⊆SðXðℂÞ; qÞ and hence WqðXðℝÞÞ ⊇ WqðXðℂÞÞ∩ ℙrðℝÞ. We give below an
example with rXðℂÞðqÞ ¼ rXðℝÞðqÞ ¼ 2, WqðXðℝÞÞ a real line and WqðXðℂÞÞ ¼ fqg (see
Example 1).

Theorem 4. Fix an even integer r ≥ 2 . Let X ⊂ ℙr be an integral and non-degenerate curve
defined over ℝ and with XregðℝÞ≠ 0= . There is a non-empty euclidean open subset U ⊂ ℙrðℝÞ
such that rXðℝÞðqÞ ¼ r=2þ 1 for all q ∈ U and fqg ¼ ∩S∈SðXðℝÞ;qÞhSiℝ for all q∈U.

Note that we also get fqg ¼ ∩S∈SðXðℝÞ;qÞhSiℂ, because∩S∈SðXðℝÞ;qÞhSiℂ is defined overℝ
and hence its dimension as a complex projective space is the dimension of the real projective
space ð∩S∈SðXðℝÞ;qÞhSiℂÞ∩ ℙrðℝÞ ¼ ∩S∈SðXðℝÞ;qÞhSiℝ.
Remark 4. We recall that the Zariski topology of ℙrðℝÞ (i.e. the topology in which the
closed sets are the intersection with ℙrðℝÞof a Zariski closed subset of ℙrðℂÞ ) may be defined
by taking as closed subsets the zero-loci of real homogeneous polynomials. Non-empty
euclidean open subsets of ℙrðℝÞare Zariski dense. To show that in Theorem 4we cannot take
as U a Zariski open subset of ℙrðℝÞ it is sufficient to find a curveX ⊂ ℙrwithXregðℝÞ≠ 0=and
with two different typical ranks. By [10] one can take the rational normal curve of ℙr, r ≥ 4.

Before proving Theorem 4 we describe in the next remark the topology of the real part
XðℝÞ of an integral projective curve defined over ℝ.

Remark 5. Let XðℂÞ be an integral projective curve defined over ℝ. Let η : Y ðℂÞ→XðℂÞ
denote the normalization map. Both Y ðℂÞ and η are defined over ℝ and hence Y ðℝÞ is well-
defined and ηðY ðℝÞÞ ⊆ XðℝÞ. Since η is an isomorphism overXregðℂÞ,XregðℝÞ is essentially
Y ðℝÞminus a finite set. Call g the genus of Y ðℂÞ. F. Klein described the possible real parts
Y ðℝÞ of genus g smooth curve defined over ℝ ([17, Proposition 3.1]). Topologically Y ðℝÞ is
the union of k pairwise disjoint circles, with k an integer between 0.and g þ 1. Thus the
topological space XðℝÞ is obtained from Y ðℝÞ by an equivalence relation which only
identifies finitely many finite subsets of Y ðℝÞ and then, sometimes, one adds to ηðY ðℝÞÞ
finitely many isolated real points of SingðXðℂÞÞ, each of them the image of two complex
conjugate points ofY ðℂÞnY ðℝÞ. Thus XðℝÞ is finite (and hence not Zariski dense in XðℂÞ) if
and only if Y ðℝÞ ¼ 0=, i.e. if and only if XregðℝÞ ¼ 0=.

Proof of Theorem 4. Since XregðℝÞ≠ 0=, there is a set J ⊂ XðℝÞ homeomorphic to a non-
empty open interval ofℝ for the euclidean topology (Remark 5). Since J is infinite, it is Zariski
dense inXðℂÞ. As in the proof of Theorem 1 letV ⊂ ℙrðℂÞbe a non-empty Zariski open subset

AJMS
27,1

50



such that rXðℂÞðqÞ ¼ r=2þ 1 for all q∈V. The set σðVÞ is Zariski open in ℙrðℂÞ. SinceXðℂÞ is
defined overℝ, we have rXðℂÞðqÞ ¼ r=2þ 1 for all q∈V. Set V0 :¼ ðV ∪ σðVÞÞ∩ℙrðℝÞ. The
set V0 is a non-empty Zariski open subset of ℙrðℂÞ. Call Jr=2þ1 the set of all subset S ⊂ J such
that jSj ¼ r=2þ 1and hSiℂ ∩ ðV ∪ σðVÞÞ. Since rXðℂÞðqÞ ¼ r=2þ 1for each q ∈ V ∪ σðVÞ,
each S ∈ Jr=2þ1 is linearly independent. Since V ∪ σ ðVÞ is open, we have S ∈ Jr=2þ1 if and

only hSiℝ ∩ V0 ≠ 0=.We get a euclidean open subsetU1 ofV0 taking the interior of the union of
all sets hSiℝ ∩ V0 for some S ∈ Jr=2þ1. To get fqg ¼ ∩ S∈SðXðℝÞ;qÞhSiℝ for all q∈ U we need
to restrict the euclidean open set U1 in the following way. Fix q∈U1 and take
S ∈ SðXðℝÞ; qÞ. We run the proof of Theorem 1 with this set S and get a curve XS

defined over ℝ and, using it, a set AS defined over ℝ. We only need to restrict U1 so that for
q∈ U the set AS is defined and hSiℂ ∩ hASiℂ ¼ fqg. ,

Example 1. Fix an integer r ≥ 3. Let Y ðℝÞ⊂ ℙrþ1ðℝÞ be the degree r þ 1 rational normal
curve. Let σ denote the complex conjugation of ℙrþ1ðℂÞ and ℙrðℂÞ. Fix p1; p2 ∈Y ðℝÞ such
that p1 ≠ p2 and p3 ∈Y ðℂÞ n Y ðℝÞ. Set p4 :¼ σðp3Þ. We may take homogeneous coordinates

z0; . . . ; zrþ1 of ℙrþ1ðℝÞand ℙrþ1ðℂÞsuch that p3 ¼ ½1 : a1 : � � � : anþ1�with ai ∈ ℂ for all iand
ai ∉ℝ for at least one i. Set o1 :¼ ½1 : Reða1Þ : � � � : Reðarþ1Þ� and o2 :¼ ½1 : Imða1Þ : � � � :
Imðarþ1Þ�. We have oi ∈ ℙrþ1ðℝÞ and o1 ≠ o2, because p3 ∉ ℙrþ1ðℝÞ. Since r ≥ 2, oi ∉XðℂÞ.
We have jfp1; p2; p3; p4gj ¼ 4 and hence hfp1; p2; p3; p4giℂ is a 3. -dimensional complex linear
subspace. Since σðfp1; p2; p3; p4gÞ ¼ fp1; p2; p3; p4g, the linear space hfp1; p2; p3; p4giℂ is

defined over ℝ, i.e.hfp1; p2; p3; p4giℂ ∩ ℙrþ1ðℝÞ is a 3-dimensional real linear space (it is the
real linear space hfp1; p2; o1; o2giℝ ). Fix o∈ hfp1; p2; o1; o2giℝ such that o is not in the linear

span of any proper subset of fp1; p2; o1; o2g. Let ‘o : ℙrþ1ðℂÞ n fog→ ℙrðℂÞdenote the linear
projection from o. Since o∈ ℙrþ1ðℝÞ, ‘o is defined overℝ and ‘−1o ðℙrðℝÞÞ ¼ ℙrþ1ðℝÞnfog. By
Sylvester’s theorem we have o∉ σ2ðY ðℂÞÞ. Thus XðℂÞ :¼ ‘oðY ðℂÞÞ is a smooth and non-
degenerate rational curve defined over ℝ. Since Y ðℝÞ≠ 0=, we have XðℝÞ≠ 0=. The complex
linear space Vℂ :¼ ‘oðhfp1; p2; o1; o2giℂÞ is a plane containing exactly 4 points of XðℂÞ (the
points ‘oðp1Þ, ‘oðp2Þ, ‘oðp3Þ and ‘oðp4Þ), because any r þ 2 points of Y ðℂÞ are linearly
independent. Set L :¼ hf‘oðp1Þ; ‘oðp2Þgiℂ and R :¼ hf‘oðp1Þ; ‘oðp2Þgiℂ. Since L≠ R and
dimℂVℂ, the set L ∩R is a unique point, q. Since σðLÞ ¼ L and σðRÞ ¼ R, we have σðqÞ ¼ q,
i.e. q∈ ℙrðℝÞ. Since q∉XðℂÞ and ‘oðp1Þ; ‘oðp2Þ∈XðℝÞ, we have rXðℝÞðqÞ ¼ 2 and hence
rXðℂÞðqÞ ¼ 2. Since f‘oðp1Þ; ‘oðp2Þg, f‘oðp3Þ; ‘oðp4Þg∈SðXðℂÞ; qÞ, we haveWqðXðℂÞÞ ¼ fqg.
Using that any r þ 2 elements ofY ðℂÞ are linearly independents, we get that f‘oðp1Þ; ‘oðp2Þg
and f‘oðp3Þ; ‘oðp4Þg are the only elements of SðXðℂÞ; qÞ. Thus WqðXðℝÞÞ ¼ hf‘oðp1Þ;
‘oðp2Þgiℝ is a line. Since SðXðℝÞ; qÞ ¼ f‘oðp1Þ; ‘oðp2Þg, q isXðℝÞ-identifiable. This is not the
first example of some q∈ ℙrðℝÞwhich is identifiable over ℝ, but not over ℂ [1,2].

Note
1 The author was partially supported by MIUR and GNSAGA of INdAM (Italy).
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