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Abstract

Let X CP” be an integral and non-degenerate complex variety. For any ¢ € P” let rx(q) be its X-rank and
S(X, q) the set of all finite subsets of X such that |S| = ry(g¢)andgq € (S), where ( ) denotes the linear span.
We consider the case |S(X, ¢)| > 1(ie. when ¢ is not X -identifiable) and study the set W (X) ¢ = Nses(x.q) (S),
which we call the non-uniqueness set of g. We study the case dim X = 1and the case X a Veronese embedding
of P”. We conclude the paper with a few remarks concerning this problem over the reals.
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1. Introduction

Let X c P” be an integral and non-degenerate variety defined over an algebraically closed
field K with characteristic 0. For any set A ¢ P”let (A) denote its linear span. Fixany g € P”.
The X -rank rx (q) of X is the minimal cardinality of a finite set S ¢ X suchthatg € (S). The
notion of X-rank includes the notion of tensor rank of a tensor (take X a multi projective space
and X c P’ its Segre embedding) and the notion of additive decomposition of a homogeneous
polynomial or its symmetric tensor rank (take as X a projective space and as X C P” one of its
Veronese embeddings). See [3,13,18,19] for a long list of applications of these notions.

Notation 1. Let S(X,¢q) denote the set of all S c X such that |S| = 7x(¢q) and ¢ € (S).
Set W(X)q = nSeS(X,q) <S>
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The set W(X), is the main actor of this paper. We often write W, if X is clear from the
context.

Remark 1. Note that W, is a linear subspace of P” containing ¢ and that if W, = {g}, and
S(X,q) = S(X,q') for some ¢’ € P’, then ¢ = q. We will call W, the non-uniqueness set of q.
We have dim W, = rx(q) —1if and only if (S) = (S') for all S, S’ € S(X, ¢). In particular
Wq = {q} and ¢ & X imply |S(X,q)| > 1.

In this paper we prove one result on the Veronese variety (ie. on the additive
decomposition of homogeneous polynomials) (Theorem 3) and three results for the case
dim X = 1 (Theorems 1 and 2 and Proposition 1). The proof of the result on the Veronese
variety uses one of the results for curves.

We first prove the following two cases (with X a curve) in which W, = {q}.

Theorem 1. Fix an even integer v > 2. Let X C P” be an integral and non-degenerate curve.
There is a non-empty Zariski open subset U C P suchthatrx(q) =r/2+1 forallq € Uand
the following properties hold:

(@) We have {q} = Nsesx.q)(S) forallq € U.
) Foral(q,q) € UXP if S(X,q') =8(X,q), thenq' =q.

Theorem 2. Fix an integer d > 2andlet X C P? be the rational normal curve. Take any
q € Plsuchthat S(X, q)is not a singleton. Then W, = {q}. Moreover,if S(X,q) = S(X,q')
for some q € P4, thenq = q.

Take a non-degenerate X C P” and ¢ € P". For any integer ¢ > 0 the f-secant variety
0,(X) of Xisthe closure in P” of the union of all linear spaces (S) with S ¢ Xand |S| = ¢. The
border rank or border X-rank bx(q) of ¢ € P” is the minimal integer b > 1 such that
q € op(X). We say that a finite set A C P” irredundantly spans qif g € (A)and g ¢ (A’) for
any A’ & A. We use Theorem 2 to prove the following result for the order d Veronese
embedding of P”.

Theorem 3. Fix integers n,d,b,k, such thatn > 2, d >8 4 <2b<dandd+2-b <
k<2d-2.Letvg :P"—>P, r= " Z d) —1, be the orderd Veronese embedding. Let

LcP'bealne SetY :=vy(L). Fix ¢ € (Y) such that by (q¢') =bandry(q') =d +2-b.
Fix a general U C P" such that \U| =k—d—2+0b. Let g €P" be any point irredundantly
spanmed by {q'} U vy(U). Then:

1) 7x(q) =kand S(X,q) 2 {E U U}pesy gy
@ Ik <243 then S(X,q) = {E U Uy and Wy = (U U {¢'})

In Section 4 we consider the following problem. For any positive integer ¢ let S(X, g, ) be the
setofall S ¢ X such that |S| = tand Sirredundantly spans . We have S(X, g, ¢) = fifor all
I <rx(q)and S(X,q,7rx) = S(X,q) # §. By the definition of irredundantly spanning set we
have S(X,q,t) = fforallt > r + 2. Since X is integral and non-degenerate, for all (X, q) we
have S(X,q,7 +1)# fand S(X,q,7 + 1) contains a general subset of X with cardinality
7 + 1. There are easy examples of triples (X, ¢, {) such that» > ¢ > rx(q)and S(X,q,t) = @
(Remark 3). It easy to check that S(X,q,)# @ for all £ such that » +1—dim X < ¢ <7
(Lemma 2). Set W(X),; = Nsesuxqn(S), with the convention W(X), ,:=P" if
S(X,q,t)# 0. We often write W, instead of W (X) '

i
In Section 4 we prove the following result. !



Proposition 1. Let X CF’,» > 4, be anintegral and non-degenerate curve. Then there exists Reconstruction

a non-empty Zariski open subset U of P such that W,; = {q} for all ¢ € U and
al |(r+2)/2) <t <.

In Section 5 we briefly discuss the case of real algebraic subvarieties of P"(R). In particular
we show that a statement similar to Theorem 1 over R is true if we take as I/ a non-zero open
subset of P"(R), for the euclidean topology (Theorem 4), but it fails if we ask for a non-empty
open subset of P"(R) for the Zariski topology (Remark 5).

We thanks a referee for useful comments.

2. Preliminary observations

The cactus rank or cactus X-rank cx(q) of ¢ € P” is the minimal degree of a zero-dimensional
scheme Z c Xsuchthatg € (Z). Let Z(X, q) denote the set of all zero-dimensional schemes
Z C X such that deg(Z) = cx(g) and g € (Z).

Remark 2. Let X c P? d > 2 be a degree d rational normal curve. We use [18, §1.3] and
[14] for the following observations. Fix g € P".

() Wehave bx (q) = cx(q) (18 Lemma 1.38) and | Z(X, q)| = 1 (18, Part (i) of Theorem 1.43).

(i) Ifcx(q) < 7x(q), thencx(q) + 7x(q) = d + 2and S(X, q) is infinite. Let Z be the only
element of Z(X, ¢),d + 2 — cx(q) is the minimal degree of a scheme A € Xsuchthatq € (4)
and A 2 Z.

(i) frx (q) > cx(q), then {q} = (Z) n(S), where {Z} = Z(X, q) and Sis any element of
S(X, q) (this also follows from the fact that 4!(P', L) = 0 for any line bundle L on P! with
deg(L) > —1, as in the proof of Claim 1).

(iv) then If x(¢) > bx(q), then dim S(X,q) = d + 3 —2b (14, eq. (9)).

() If d is odd and rx(q) = (d+1)/2 (e. 7x(q) = bx(q) is the generic rank), then
S(X,q) = Z2(X,q) and |S(X, q)| = 1 (18, Theorem 1.43)).

(vi) Assume devenand 7x(q) = d/2 4 1and so g has the genericrank and bx (¢) = 7x(q),
but we do not assume that ¢ is general in P%. Fix S, S’ € S(X,q) such that S# S'.

Claim 1. (S)n(S') = {q}.

Proof of Claim 1. Since S# S'and S € S SX ,q), wehaveq ¢ (SnS’). The Grassmann’s
formula gives (P!, Zs s (d)) > 0. Since 4'(P', L) = 0 for any line bundle L on P! with
deg(L) > —1 and ¢ ¢ X, we have SNS =¢ and h'(P',Zs,s(d)) = 1. Thus the
Grassmann’s formula implies dim((S) n (S’)) = 0, proving Claim 1.

Obviously Claim 1 implies W, = {q¢} in this case, which by [18, Part (i) of Theorem 1.43]is
the only case in which 7x(¢q) = bx(¢q) and Z(X, q) is not a singleton.

Note that (iii) implies that each ¢ € P" with cx(q) # 7x(q) is uniquely determined by the
zero-dimensional scheme evincing its cactus rank and by one single set evincing its rank (any
S € S(X,q) would do the job). Obviously part (i) implies that most ¢ € P” (the ones with
7x(q) = bx(q) ) are not uniquely determined by S(X, ¢). By parts (i) and (i) for each ¢ € P”
such that 7x(q) = bx(q) there are exactly oo/, { := rx(q) — 1, points 0 € P" with S(X,0) =

S(X,q).

In the proof of Theorem 3 we use the following result (5, Theorem 1], [4, Theorem 2]); we
use the assumption d > 6 to have 4d —5 > 3d + 1 and hence to apply a small part of [5,
Theorem 1].

Lemma 1 (/5, Theovem 1], [4, Theorem 2]). Fix an integer d > 6. Let S ¢ P, n > 2, bea
finite set such that |S| < 4d —5. We have h' (Zs(d)) > 0if and only if thereis F C Sin one of
the following cases:
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(1) |F| =d+1and F is contained in a line;

() |F| =2d + 2 and F is contained in a reduced conic D ; if D = Ly U Ly with each L; a
line we have LinLy & F and |[FnLi| = |[Fnly| =d+1;

() |F| = 3d, F is contained in the smooth part of a reduced plane cubic C and F is the
complete intersection of C and a degree d hypersurface;

(@) |F| = 3d+ 1and F is contained in a plane cubic.

3. Proofs of Theorems 1-3

Proof of Theorem 1. To prove part (b) it is sufficient to prove part (a), because
S(X,q') = S(X,q) implies {¢'} € Wq' = W,and W, = {q} forq € U.

Since part (a) is trivial in the case 7 = 2, we assume 7 > 4. Since no non-degenerate curve is
defective (23, Corollary 1.5 and Remark 1.6]), there is a non-empty Zariski open subset V C P”
such that 7x(q) =7/2 + 1land dim S(X,q) = 1forallge V.

For each set S ¢ X such that |S| = 7/2 + 1and dim(S) = »/2let £5 : P"\(S) — P7/>71
denote the linear projection from (S). For a general S we have (S)nX =S (scheme-
theoretically) by Bertini’s theorem and the trisecant lemma (24, Corollary 2.2]) and £gx\s is
birational onto its image, again by the trisecant lemma and the assumption » > 4.

Fix a general S ¢ X such that |S| = 7/2 4 1. Let X5 ¢ P’/?"! be the closure of £5(X\S) in
P’/2-1 There is a finite set £ ¢ X5 containing Xs \ £s(X \ S) and such that for eachp € Xs \ E
there is a unique 0 € X \Ssuch that £5(0) = p.Forany set A ¢ Xg\Elet Ag ¢ X\ Sdenote
the only set such that {s(As) = A. Any general A C X5\ E such that |[A|=7/2+1is
linearly dependent, but each proper subset of A is linearly independent. Thus (S) n (As) isa
single point, gs 4, and gs, 4 & (B) for any B & As. For a general A we get as As a general
subset of X with cardinality #/2 + 1. Thus for a general Awe havegs 4 ¢ S'forany S’ & S.
We start with S € S(X,0) for a general o € P". Thus rx(q) =7/2+ 1 for a general
g € (S). Thus for a general A we get S € S(¢gs4)and As € S(gs.a). By construction we
have {gs4} = (S) n (As). For a general A the point ¢g 4 is general in (S). By the generality of S
we get that the points gs 4 's (with (S, A) varying, but general), cover a non-empty Zariski
open subset of P". [

Proof of Theorem 2. Set b := bx(q). Since S(X, ¢) is not a singleton, we have ¢ ¢ X and
hence b > 2. Part (vi) of Remark 2 covers the case 7x(¢q) = b and hence we may assume
7x(q) > b. Thus 7x(q) = d + 2 —b. By part (v) of Remark 2 we have S(X,q) > 2. We will
prove the stronger assumption that {¢} = nger{(A), where I' is any irreducible family
contained in S(X,q) and with dim I" = d + 3 — 2; we do not assume that I is closed
in (X, q).

(a) First assume b = 2. We use the proof of [20, Proposition 5.1]. Fix a € P?\{q}. Let
H c P?bea general hyperplane containing . Since ¢ ¢ X, Bertini’s and Bezout’s theorems
give that X n H is formed by d distinct points. Since X is connected, the exact sequence

0—>Zx—>Ix(1) —>IXQH‘H(1) —>0

givesthat X n HspansH.Thusq € (Xn H).Sincerx(q) = d,wegetX n H € S(X,q).
The generality of H gives a ¢ H, concluding the proof that W, = {g}.

(b) Step (a) and part (i) (resp. part (vi)) of Remark 2 for the case d odd (resp. d even) and ¢
with generic rank cover all cases with d < 4. Thus we may assume d > 5and use induction
on d. Fix a general o € X.Let £, : P \ {o} — P%! denote the linear projection from o. Let



Y c P41 denote the closure of ¢, (X \ {o})in P91 ¥ is a rational normal curve of P91, Set Reconstruction

q :=14,(q) and Z' := £,(Z) (by the generality of 0 we have o ¢ (Z) and hence Z' is well-
defined, deg(Z’) =b and dim(Z’) =b—1 ). The generality of o also implies that
q¢(Z'u{o})forany Z' & Z (here we use that X is a smooth curve and hence Z has only
finitely many subschemes). Thus ¢’ € (Z')and ¢’ ¢ (Z')forallZ" & Z'.Since Y is a degree
d — 1 rational normal curve and b < d/2, parts (i) and (i) of Remark 2 imply by (¢’) = b and
Z(Y,q") = {Z'}. Fix an irreducible family I"C S(X,¢q) such that dim I" = d + 3—-2b (it
exists by part (v) of Remark 2). Let B denote the set of all A € I" such that o € A. By part (v) of
Remark 2 and the generality of o we have B# 0 and dim B =d +2—-2b. Set
A= {{,(B\ {0})}pep Since Y is a rational normal curve, parts (i) and (i) of Remark 2
imply A C S(Y,q’). We have dim A = (d—1) + 3 —2b. The inductive assumption gives
{¢'} = naea(A). Thus ({0,q}) = Npep(B). Since dim I'=dim S(X,q) =d +3-2b
(part (v) of Remark 2) and o is general in X, there is SeI such that ogS.
Thus Naer(4) ={q}. O

Proof of Theorem 3. By Autarky (19, Exercise 3.2.2.2]) we may assume U # §. Since U is
general in P”, we have dim (v;(U) U Y) = min{r, dim(Y") + |U|}. Since dim (¥) = d and
d +|U| <7, we have (v;(U))n (Y) = §. By Theorem 2 we have W(Y), = {¢'}. Take
E € S§(Y,q) and set A:=UUE. The set {¢’} uU irredundantly spans ¢ and
(YYn (g(U)) = . Hence we have E n U =% and |A| =k Since |A|=% and ¢q €
(v4(A)), we have 7x(q) < k. Since U is general in P, we have h°(Z4(t)) = max{0,/°(Zg
(1)) =|U|}forallt € N;to use this equality we need to fix one element, £, of S(Y', ¢), before
choosing a general U.

Note that we have W, = (v4(U) U {¢'}) for any g such that S(X, q) = {E U U} geg(vq)
by Theorem 2. Assume either 7x(q) <% or k < 2d-3 and the existence of BeS(X,q)\
{E U Ul ges(y g In the former case take B € S(X,q). Set S := A U B. In both cases we
have |B| < |A|and |A| + |B| < 4d —5. Since k' (Zs(d)) > 0 (6, Lemma 1)) there is F C S'in
one of the cases listed in Lemma 1.

(a) Assume the existence of a plane cubic 7 c P” such that |7 n S| > 34.

(al) Assume # = 2. Thus T is an effective divisor of P2 Consider the residual exact
sequence of T in P%

0—-Zs\sar(d —3) > Zs(d) > Isarr(d) >0 @

Since [S\ S n 7| < 4d-5-3d = d -5, we have ' (Zg\sn7(d —3)) = 0. Thus either [7,
Lemma 5.1] or [8, Lemmas 24 and 2.5] give A\ A n T =B\ B n T. Assume for the
moment L& T. Bezout gives |[Ln T < 3. Since U is general and 4°(O:2(3)) = 10, we have
|lUNT| <9.Thus|B nT| >3d-12 > 12 > |T n A|and hence |B| > |A|,a contradiction.
Now assume L C T.Since 1°(0;2(2)) = 6and UNL = we get|A n T| < d + 8—b. Thus
IBNT| > 2d - 5+ band again |B| > |A|, a contradiction.

(@2) Assume n > 2. Let M CP" be a general hyperplane containing the plane (7') (so
M = (T)if n = 3).Since Sis a finite set and M is a general hyperplane containing (7), we
have S n M =S n (T). Consider the residual exact sequence of M in P™:

0—-Zosam(d—1)=Ts(d) = Lsnmm(d)—=0 @

Since [S\ A n M| < 4d—5-3d = d—5, we have I (Zgsnn(d—1)) =0. Thus either
[7, Lemma 5.1] or [8, Lemmas 2.4 and 2.5] give A\ A n M = B\ B n M. Since no 4 points
of U are coplanar, we have |AnM|<d+5-b<3d-d—-2+0b. Thus |B| > |A], a
contradiction.
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(b) Assume the existence of a plane conic D such that |[SNnD| > 2d + 2.
(b1) Assume 7 = 2. Consider the residual exact sequence of D in P*

0 = Zssnp(d —2)—Zs(d) = Zsapn(d) =0 ®)

First assume 7'(Zg\snp(d—2)) > 0. Since [S\SND| <4d-5-2d—-2=2(d-3)-1,
there is a line RcP? such that [RN(S\SND)| >d-1 (9, Lemma 34]). Thus
ISN(DUR)| >3d+1. Step (al) gives a contradiction. Now assume /! (Zs\snp
(d—2)) = 0. Either [7, Lemma 5.1] or [8, Lemmas 24 and 2.5] give AA\AnD = B\BnD.
Assume for the moment L & D. Thus |L n D| < 2. Since U is general and 4°(0;:(2)) = 6,
we have |[UND| <5 Thus |[BnD| > |AnD|and so |B| > |A], a contradiction. Now assume
LcD.WriteD = L UR withRaline.Set {0} :==L n R.SinceU n L=§|L n k| = land
|UNR|" < 2foreachline R, wehave |[AND| < d + 4 —b.LetZ' C Lbe the only degree b zero-
dimensional scheme evincing the cactus rank of ¢’ with respect to the rational normal curve

vq(L) (part (i) of Remark 2).Set Z' := Z/ uUand Z := Z'UB.Since A\AnD = B\ Bn D, we
haveZ = Z'u(UNR) U (BND) u (U \ UND).Sinceq’ € (v,(Z')),wehaveq € (vs(Z")) n
(va(B)). Thus h' (Zz(d)) > 0.Since B (Zipsap(d —2)) = M (Zs\snp(d —2)) = 0, the residual
sequence (3) of D in P? with Z instead of S gives 1! (D, Zznp p(d)) > 0.Since D = R U L, using
either [16, Corollaire 2] or the residual exact sequences of R and L in P2 we get that we are in one
of the following cases:

(1) deg(ZnL)y>d+2
(2 deg(Z nR)y>d+2
B deg(Z NnR)=deg(Z nL)y=d+1ando & Zeq.

Recall that A\ A n B=B\ B n D (and hence) |[BnD| < |AnD|and that [AnD| <
d+4-0b.

(bl.1) Assumedeg(ZNL) > d+2.SinceZnNnL =2"u (BnL),weget|BNL| >d+b -2
Consider the residual exact sequence of L in P*

O*IS\SnL(d_ 1)—>Ié(d)—>I5HLL(d)—>O (4)

First assume /' (Zg\sn2(d —1)) > 0. Since 7 (Zs\snrur)(d —2)) = 0, the residual exact
sequence of R gives hl(R,IgnR\SanL(d— 1)) > 0. Thus [SNR\ Sn{o}| = d + 1. Since
|[UNR| <2, we get [BAR\Bn{o}| >d—-1 and hence |B| > |A| (because d > 5), a
contradiction.

Now assume /! (Z s\snz(d—1)) = 0.By [7, Lemma 5.1] or [8, Lemmas 2.4 and 2.5] we get
A\AnL=B\BnLSince|lBnL|>d+2-b=|AnL|wegetlBNnLl=d+2-bIn
this case part (1) of Theorem 3 is proved. To prove part (2) we need to prove that
BnLeS(Y,q) Since | BNLl=d+2-band deg(Z nL)>d-+2 wegetinB=9
and deg(ZnB) =d+2 Thus (vs(BNL))N(vy(Z")) is a single point, ¢', and BNL

deLZ) —d, we have (v;(U))n (vy(L)) = 0.

SinceB\ BNL=A\AnL = U,wegetq = ¢, proving part (2) in this case.

(b1.2) Aﬂssume deg(ZNR) =deg (ZnL) =d +1and o & Zq(i.e.0 € Z ). Since deg(Z') = b
anddeg(Z N D)=b+|UnR| <b+2 weget|LNnB|>d+1-b|R n B|>d-1and
0o ¢& B Thus |[BnD|>2d+2-b. Since |[Bn D| <|A n D| <d+4-b, we obtain a
contradiction.

(b1.3) Assume deg(Z n R) > d + 2. Since |U n R| < 2 with strict inequality if 0 € Z];
and every point of (v4(R)) has rank < d by Sylvester’s theorem, we get |UNR|+

€S(Y,q"). Since U is general, and |U| < (



deg(Z’ n R) =2, |B n R| =dand U NnBNR= 0 If hl(IS\SnR(d—l)) = 0, we have Reconstruction

A\ ANR =B\ Bn Rby|[7, Lemma 5.1] or [8, Lemmas 2.4 and 2.5] and hence |B| > |A|, a
contradiction. Now assume ' (Zg\snr(d — 1)) > 0. Since h!(Zs\snp(d —2)) = 0in this part
of the proof, the residual exact sequence of L gives 2 (L, Z; s\znsnr(d —1)) > 0and hence
ISN(L\LNR)| > d+1 Thus |[BN(L\LNR)| =b-1 We get |[BnD| > d+ b—1. Since
AAAND=B\BnD=U\UnD, we get d+b—1<d+4—->b and hence b =2 and
[BNL| < 2 Since |UNR| + deg(Z' nR) > 2 and ¢’ uniquely determines Z’, R is uniquely
determined by Z’ and the set [Rn U|. If 0 € Z;, Ris uniquely determined by ¢' and one point
of R \{0}. Since we took a general U after fixing ¢', we have |U nR| < 1if RN L € Z;,. Hence
(varying the points of U \U NR(if U & R) we may (after fixing ¢’ ) assume that U \ UnRis
generalinP” \ D.SinceA\ AnD=B\BnD=U\Un D,|U\UnND| < d42—2 —2d
—1land U\ UnD is general, we have (v;(U \ UND))n (vg(D)). Thus there is a unique
q € (vy(D)) such that ¢ € ({v,(U \UNR),q"}). We have ¢" € (uy;(AnD)) N (vg(BnD))
N ({¢,vq (UNR)}). Thusis it sufficient to prove parts (1) and (2) of the theorem for g', A n D
and BnD instead of ¢, A and B, i.e. in the rest of this step we assume U = U nR. Since
|B| < |Al,wehave |[BNL| < 2. Thus i (Zzyrnp)(d—1)) = 0.if 0 & Z,; N B,[7, Lemma 5.1]
gives a contradiction, because Z' & B. Now assume o € Z/,; N B. Since 0 € Z,; and Z’ is
uniquely determined by ¢’, we observed that |[UnR| < 1. Thus (under the assumption
Uc D), we have |U| <1 Since |BNnR|=d,0 =L n R € Bby assumption and Z' & R,
we get deg(ZNR) < d + 1, a contradiction.

(b2) Assume 7 > 2. Let M C P” be a general hyperplane containing the plane (D). Thus
SnM=S n (D). Since U is general, no 4 points of U are coplanar. Thus |[UnM| =
|lUn (D) <3

(b2.1) Assume 7'(Issnu(d—1)) > 0. Since |S\ SNM|<|A|+[B|-2d- 2<
2(d—1) 41, there is a line ' c P” such that |[R'n(S\ SNM)| = d + 1. If R (D), then
R' U D is a plane cubic and we may apply step (al). Thus we may assume R’ & (D). Let
N c P"be a general hyperplane containing V. Since S'is a finite set, the generality of M and N
gives S N (M UN) =S n (DU R'). Consider the residual exact sequence

0= Za\snmun)(d — 2) = Zs(d) = Lsamunmun(d) =0 ©)

of M U N in P". Since |S \ Sn (M U N)| < |A| + |B| -3d-3<d- l,WehaVGhl(Is\sm(MUN)
(d—2)) = 0. Thus either [7, Lemma 51] or [8, Lemmas 24 and 25] give A\ A n (M UN) =
B\BNn(MUN).Wehave An(MUN)CEU(Un(MUN))and hence |A\A n(Mu
N)|>2k-d-2+b-5Snce|An(MUN)| <d+7-bweget|BnNn(MUN)| >3d+3—-
d—7+b=2d—4+b.Since B\ BN(M UN)| > k—d —2 + b—5, we get a contradiction.

(b2.2) Assume K} (T s\snm (d —1)) = 0. Either [7, Lemma 5.1] or [8, Lemmas 2.4 and 2.5]
give AN\AnM =B\ BnM.Since |[UnM|=|Un(D)| <3, wehave|U\UnM|>k—-d-5
+ b. Assume for the moment L& (D). We get [ENM| < 1and hence |A\ AnM| > k-4
Since A\ANM =B\ BnM,weget|SNnM| < |A| + |B| —2k—8and hence2d + 2 < 8 a
contradiction. Now assume L C (D). If L & D we get (since [LND| < 2) |SNM| > 3d +b.
Since ANAnM=B\BnM and U\ UnM|>k—-d-1+0b, we get |S| > 2d+ 2b
+ k—1, a contradiction.

(c) Assume the existence of a line R C P” such that [RN S| > d + 2.Let M C P"be a general
hyperplane containing R (so M = R if n = 2). Since S is a finite set and M is a general
hyperplane containing R, we have M NS = Rn S. Since U is a general subset of P” with
cardinality #—d -2+, no 3 of its points are collinear (and hence |[UNEK| < 2) and
UnL = @.Let M c P"bea general hyperplane containing R (soM = Rifn = 2).Since Sisa
finite set and M is a general hyperplane containing R, we have M nS = Rn S.
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(c1) Assume /! (Zg\sm(d—1)) > 0. Since [S\ S n M| < |A| + |B|-d-2 < 3(d-1) -1,
either there is a line Ry such that |[R; N (S \S n M)| > d + 1 or there is a conic D; such that
IDin(S\S n M)| >2d If Rand Ry (resp. R and D) are contained in a plane, and in
particular if n=2 step (b) (resp. step (a)) gives a contradiction, because
ISN(RURy)| = 2d + 3 (resp. |SN(R U Dy)| > 3d + 2). Thus we may assume that this is
not the case and in particular we may assume # > 2. Let NV be a general hyperplane
containing R; (resp. D;). We use the residual exact sequence (5). Note that
SN(MUN)=Sn(RURy) (resp. SN (M UN) = Sn (RuU (Dy)).

(c1.1) Assume /'(Z s\snaun)(d—2)) > 0. We exclude the existence of D;, because
SN (RuUDp)| >3d+2and hence [S\Sn (M uN)| <d-1 Thus in this case we may
assume the existence of Ry. Since |[SN(RUR))| > 2d + 3, we have |[S\ SNn(MUN)| <
|A|+ [B|-2d-3 <2(d-2)+1 By [9, Lemma 34] there is a line Ry such that
|[R2 N S\ SN(MUN)| > d. Let M’ be a general hyperplane containing R». Consider the
residual exact sequence of M’ U M U N. We have h!(Z s\snuvumry (d = 3)) = 0, because
[S\SN(MuUuNuUM)| <2k-d-2-d-1-d < d-4. Either [7, Lemma 51] or [§,
Lemmas 2.4 and 25] give ANA Nn(MUNuUM')=B\Bn(M uN uM). Since M, N
and M’ are general, we have SN (M UN U M’') = SN (R U Ry U Ry). Since U is general, no
3 of the points of U are collinear. Thus |U n (R U Ry U R2)| < 6.Hence |JANAN (M UN u M')|

>k—d-8+b Since ANAN(MUNUM)=B\Bn(MuUNuM'), we get |SNn(M U
NuM)| £ 2k—2k+ 2d + 16 — 2b. Hence 2d + 16 —2b > 3d + 3, a contradiction.

(c1.2) Assume h'(Z s\snu n)(d—2)) = 0. Either [7, Lemma 5.1] or [8, Lemmas 2.4 and
25] give ANAN(MUN)=B\Bn(MUN). Since Un(MUN)=Un(RUR;), we
have |[U\NUN(M UN)| > k—d—6+b. Assume for the moment L ¢ {R,R;}. We get |Ln
(MUN)| <2 Thus ANAN(MUN)| 2k+b-8 Since ANAn(M UN)=B\Bn
(M UN), we get |SN(M UN)| <16—0 < 2d + 3 (even when instead of |S| we take 2%).
Thus we may assume that either L = Ror L = R’.Inboth cases, writing D := RUR’ wearein
the case solved in step (b1).

(c2) Assume /' (Z s\sn m(d—1)) = 0. Either [7, Lemma 5.1] or [8, Lemmas 2.4 and 2.5]
give AN\AnM =B\ BnM.

(c2.1) Assume R =L Weget U =A\AnL =B\ BnL Thus B=UuU(BnL).Since
wa(UN n (Y)Y =0, gewas(U)UY), q & w(U)), q& (vs(Y)) (because U# %) and (w,(U))n
(Y) = ¢, there are uniquely determined ¢; € (v4(U))and g» € (Y)suchthatq € ({q1,q2}).
The uniqueness of g2 gives g2 = ¢'. Since (v, (U)) N (Y) = Pand g € (vs(A)) N (va(B)), we
get ¢ €{vg(BnL)). Thus [BnL|>ry(¢)=]AnL|Since |B] < |A|and AN\ANL=
B\BnL, weget|B=|Aland B=UUF with Fn U =@and F € S(Y,q'). Thus the
theorem is true in this case.

(c2.2) Assume R # L.Since |L N R| < 1, weget |[E N R| < 1.Since |U N R| < 2, we get
|ANnR| <3and hence BNR| >d-1>]ANnKR| Since AN\AnR=B\BnR, we get
|B| > |A|, a contradiction. [

4. Irredundantly spanning sets
Lemma?2. [fr+1-dimX <t <7, then S(X,q,t)# 0.

Proof. The case t = » + 1 — dim X is an obvious consequence of the proof of [20, Proposition
5.1]. Assume 7 +2—-dim X < < 7. Let Y CP” be the intersection of X and (¢ 4+ dim X —
7 —1) general quadric hypersurfaces. By Bertini’s theorem Y is an integral and non-
degenerate subvariety of P”. Thus for any ¢ we have S(X,q,t) 2 S(Y,q,t). Since
t=r+1-dimY, wegetS(Y,q,0)#0. O



Remark 3. LetX c P%d > 4,bearationalnormal curve. Fixq € P4suchthatryx(q) =2 Reconstruction

Since any subset of X with cardinality at most d + 11is linearly independent, the definition of
irredundantly spanning set gives S(X,q,¢) = @ for all fsuch that 3 < ¢ < d—1.

Proof of Proposition 1. Since a finite intersection of non-empty Zariski open subsets of P”
is open and non-empty and the interval | (7 + 2)/2]| < ¢ < # contains only finitely many
integers, it is sufficient to prove the statement for a fixed . The case t = 7is true by Remark 3.
The case 7 even and ¢ = 7/2 + 1is true by Theorem 2. Thus when 7 is even we may assume
r/2+ 2 < t < 7. Since we saw that the case 7 = ¢ is always true, we proved the proposition
for » = 4. Thus we may assume » > 5and that the proposition is true for all curves in a lower
dimensional projective space. Fix a general p € X and call £: P" \ {p} - P""! the linear
projection from p. Let ¥ € P"~! be the closure of £(X \ {p})in P""1. Y is an integral and non-
degenerate curve. Since p is general in X, it is a smooth point of X and hence £ x\ () extends to
a surjective morphism y : X — Y with u(p) associated to the tangent line of X at p. Thus
Y = u(X). By the trisecant lemma ([24, Corollary 2.2)) and the generality of p we have
deg (LnX) < 2forevery line L C P" such that p € L. Hence /| 5 is birational onto its image
and there is a finite set /¥ C X containing p such that yx, » induces an isomorphism between
X\ Fand Y\ u(F). Fix the integer ¢ such that | (» + 2)/2] < t < rand writez := ¢ —1. By
the inductive assumption and, if 7 is odd and ¢ = [ (» + 2)/2], Theorem 2 applied to the
projective space P! there is a non-empty Zariski open subset V of P’~! such that
W(Y),, = {q} forallg € V.Fix a € Vand finitely many S; € S(Y,4,2), 1 < < ¢ such that
{a} = n¢_;(S). Restricting if necessary V we may assume that (for a choice of sufficiently
general Si(a), ..., S,(a)) we have S;(a) N u(F) = ffor all i and all a. Hence there is a unique
Aj(a) c X\ Fsuchthat u(A4;(a)) = Si(a).Sincep € F, Bi(a) := A;(a) U {p}has cardinality 7,
1<i<eSetU,:=¢1(V)cP \{p}.ForeachaeV,set L, := {p}u ¢(a). Each L, is a
line containing p, U, is the union of all L,\{p}, @ € V,and L, = n%_,(B;(a)). Fixa€V and
beL,\ {p} Note that each B;(a) irredundantly spans b. Fix another general o € X, 0 # p. We
get in the similar way a set U,. It is easy to check that W, ; = {q} forallg € Uy n U,,. Thus we
may take U = U, N Uy. O

5. Real varieties and real ranks

Up to now we worked over an algebraically closed field KK with characteristic zero. In this
section we take K = C, but we consider varieties X C P” defined over R. Not only we fix the
real structure of X but we assume that the embedding X & P”is defined over R. We call X (C)
and P”(R) the set of all complex points of X and P”. For any g € P"(C) we have defined the X
rank 7y(q) and the set S(X,q). In this section we write 7y(c)(q) instead of 7x(q) and
S(X(C),q)instead of S(X, ¢). Since X is defined over R, the set X (R) of its real points is well-
defined. Since the embedding X < P” is defined over R, we have X(R) = X(C)n P"(R).
Easy examples show that a nice X defined over R may have X (R) = . For instance take the
smooth plane conic C := {x2 + x? + 13 = 0} (we have C(C) = P!(C)). Felix Klein proved
that for every integer ¢ > 0 there is a smooth curve X (C) of genus g defined over R and with
X(R) = @ (17, Proposition 3.1]. Thus the assumption that X (R) is large is necessary. We
assume that X has a smooth point defined over R (in symbols, we assume Xres(R) # @). Set
7 := dim X = dimc X (C). The sets P (C) and X (C) also have a euclidean topology. With the
euclidean topology Xres (R) is a topological (and C* ) manifold with pure dimension »# and the
assumption Xreq(R) # @says that this manifold is non-empty. The assumption Xeeo(R) # @is
equivalent to assuming that X (R) is Zariski dense in X (C), because Sing(X (C)) is a union of
complex varieties of dimension < 7. For any set S cP’(C) let (S) be the complex linear
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projective subspace of P”(C) spanned by S, i.e. the linear space that in the previous sections
we called (S). For any S C P"(R) we write (S)y for the minimal real projective subspace of
P”(R) containing S. Since S € P’ (R) we have (S)p = (S) N P"(R). Since X(R) = X(C)n
P"(R), X(R) is Zariski dense in X(C) and X (C) spans P"(R). Thus for each ¢ € P"(R) the
X (R)-rank (i.e. the minimal cardinality of a set S ¢ X (R) such that g € (S) ) is a well-defined
integer. For any g € P"(R) let S(X(R), ¢) denote the set of all S ¢ X (R) such that g € (S)
and |S| = 7x(w) (¢). The interested reader may find the definition of a real semialgebraic set in
[12, §2.1]. The set S(X(R), g) is semialgebraic ({12, Proposition 2.2.7]). Set

Wi (X(R)) := Nsesix®) ) (S)g-

We always have 7x(r)(¢) > 7x(c)(¢) and in many cases the inequality is strict. For instance,
when X cP? d > 3, is a degree d rational normal curve for each integer ¢ such that
[(d+2)/2] <t < dthereis g €P"(R) such that ry()(q) = [(d +2)/2] and rxr)(q) = ¢
[10,15]. See [11] for definitions and many examples when X(C) is a smooth curve and
[1,2,21,22] for tensors and symmetric tensors. When 7xg)(q) = 7x(c)(q) we have
S(X(R),q) €S(X(C),q) and hence W,(X(R)) 2 W,(X(C))n P"(R). We give below an
example with 7xc)(q) = rxm)(q) = 2, Wy(X(R)) a real line and W,(X(C)) = {q} (see
Example 1).

Theorem 4. Fix an even integerv > 2. Let X C P be an integral and non-degenerate curve
defined over R and with X,ee(R) # 0. There is a non-empty euclidean open subset U C P"(R)
such that ryw)(q) = 7/2+1forallq € Uand {q} = Nsesxw)q)(S)rfor all g€ U.

Note that we also get {q} = Nsesxm)q)(S)c» because Nsesx(r). ) (S) is defined over R
and hence its dimension as a complex projective space is the dimension of the real projective
space (Nsesx(r).g) (S)c) N P (R) = Nsesx(®).q) (S)r-

Remark 4. We recall that the Zariski topology of P"(R) (ie. the topology in which the
closed sets are the intersection with P (R) of a Zariski closed subset of P"(C) ) may be defined
by taking as closed subsets the zero-loci of real homogeneous polynomials. Non-empty
euclidean open subsets of P (R) are Zariski dense. To show that in Theorem 4 we cannot take
as U a Zariski open subset of P" (R) it is sufficient to find a curve X C P” with X,eq(R) # #and
with two different typical ranks. By [10] one can take the rational normal curve of P”, » > 4.

Before proving Theorem 4 we describe in the next remark the topology of the real part
X (R) of an integral projective curve defined over R.

Remark 5. Let X(C) be an integral projective curve defined over R. Let  : Y/(C) — X(C)
denote the normalization map. Both Y(C) and # are defined over R and hence Y'(R) is well-
definedand (Y (R)) € X(R).Since#is an isomorphism over Xyeg(C), Xreq(R) is essentially
Y (R) minus a finite set. Call g the genus of Y (C). F. Klein described the possible real parts
Y (R) of genus g smooth curve defined over R (17, Proposition 3.1]). Topologically Y (R) is
the union of % pairwise disjoint circles, with % an integer between O.and g + 1. Thus the
topological space X(R) is obtained from Y (R) by an equivalence relation which only
identifies finitely many finite subsets of ¥ (R) and then, sometimes, one adds to n(Y (R))
finitely many isolated real points of Sing(X(C)), each of them the image of two complex
conjugate points of ¥ (C)\ Y (R). Thus X (R) is finite (and hence not Zariski dense in X (C)) if
and only if Y (R) = §, i.e. if and only if Xee(R) = 0.

Proof of Theorem 4. Since X,eg(R) # §, thereisaset/ ¢ X(R) homeomorphic to a non-

empty open interval of R for the euclidean topology (Remark 5). Since / is infinite, it is Zariski
dense in X (C). As in the proof of Theorem 1 let V C P (C) be a non-empty Zariski open subset



such thatry(cy(q) = 7/2 + 1forallg € V. The set 6()) is Zariski open in P"(C). Since X (C)is  Reconstruction

defined over R, we have 7 (c)(q) = 7/2+ 1forallg e V.Set V' := (V U 6(V)) NP’ (R). The
set V' is a non-empty Zariski open subset of P (C). Call J, /241 the set of all subset S C J such
that [S| = 7/2 4 1and (S). n (VU 6(V)).Sincerx(c)(q) = 7/2 4 1foreachq € V u 6(V),
each S€ J, /541 is linearly independent. Since VU ¢ (V) is open, we have S € J, o, if and
only (S)p N V' # 0. We get a euclidean open subset U1 of V' taking the interior of the union of
all sets (S)p N V' for some S € J,/241. To get {q} = N sesx(r)q) (S)g for all g € U we need
to restrict the euclidean open set U; in the following way. Fix ¢e€if; and take
S € S(X(R),q). We run the proof of Theorem 1 with this set S and get a curve Xg

defined over R and, using it, a set As defined over R. We only need to restrict I/, so that for
g€ U the set Ag is defined and (S)~ n (4s)- = {q}. O

Example 1. Fix an integer » > 3. Let Y(R) c P""}(R) be the degree 7 + 1 rational normal
curve. Let ¢ denote the complex conjugation of P"+1(C) and P"(C). Fix p1, p» € Y(R) such
that p1 # peand ps € Y(C) \ Y(R). Set py := o(p3). We may take homogeneous coordinates
20, - - ,2r110f PP (R)and P *1(C)such thatps = [1: @) : - - - : @yy1] witha; € Coralliand
a; € R for at least one 7. Set 01 :=[1:Re(a1) : -+ : Re(ay41)] and 02 :=[1 : Im(ay) : -+ - :
Im(a,,1)]. We have 0; € P"*1(R) and 0; # 05, because p3 & P"*1(R). Since 7 > 2, 0; ¢ X(C).
Wehave |{p1,p2, 3, ps}| = 4and hence ({p1, p2, b3, p4})-1s a 3. -dimensional complex linear
subspace. Since o({p1,p2,P3,p4}) = {p1, 2,3, b4}, the linear space ({p1,p2,ps,p4})c is
defined over R, i.e.({p1, P2, b3, 04})c N P"*1(R) is a 3-dimensional real linear space (it is the
real linear space ({p1, 2, 01,02})r ). Fix 0 € ({1, P2, 01,02} ) such that o is not in the linear
span of any proper subset of {1, s, 01,02 }. Let £, : P"*1(C) \ {0} = P’(C) denote the linear
projection from o. Since 0 € P"*1(R), £, is defined over Rand £;1(F"(R)) = P"*1(R)\{o}. By
Sylvester’s theorem we have o & 62(Y (C)). Thus X(C) := £,(Y(C)) is a smooth and non-
degenerate rational curve defined over R. Since Y (R) # @, we have X (R) # §. The complex
linear space Ve := £,({{p1,2,01,02}) ) is a plane containing exactly 4 points of X (C) (the
points £,(p1), £o(D2), £,(ps) and £,(py)), because any 7 + 2 points of Y (C) are linearly
independent. Set L := ({£,(p1), 4 (p2)})c and R := ({€,(p1), 4o (p2)})~ Since L# R and
dim¢ Ve, the set L N R is a unique point, ¢. Since 6(L) = Land 6(R) = R, we have 6(q) = ¢,
ie. g €P(R). Since ¢ ¢ X(C) and 4,(p1), 4, (p2) € X(R), we have ry@)(q) = 2 and hence
7x(0)(q) = 2.5ince {Lo(p1), Lo (b2) }, {o(b3), Lo (p4) } € S(X(C), g), we have W, (X(C)) = {q}.
Using that any 7 + 2 elements of Y'(C) are linearly independents, we get that {4, (p1), £, (p2) }
and {4,(p3),4,(ps)} are the only elements of S(X(C),q). Thus W,(X(R)) = ({4 (b1),
4y (p2)})risaline. Since S(X(R), q) = {4, (1), 4o (p2)}, g1s X (R)-identifiable. This is not the
first example of some g € P"(R) which is identifiable over R, but not over C [1,2].

Note
1 The author was partially supported by MIUR and GNSAGA of INJAM (Italy).
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