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Abstract
Let F be a field of zero characteristic, let NnðFÞ denote the algebra of n3n strictly upper triangular matrices
with entries in F , and let f : NnðFÞ→NnðFÞ be a nonlinear Jordan centralizer of NnðFÞ; that is, a map
satisfying that f ðXY þ YXÞ ¼ Xf ðY Þ þ f ðY ÞX, for all X ; Y ∈NnðFÞ. We prove that f ðXÞ ¼ λX þ ηðXÞ
where λ∈F and η is a map from NnðFÞ into its center ZðNnðFÞÞ satisfying that ηðXY þ YXÞ ¼ 0 for every
X ;Yin NnðFÞ.
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1. Introduction
Consider a ring R. An additive mapping T : R→R is called a left (respectively right)
centralizer if TðabÞ ¼ TðaÞb ðrespectivelyTðabÞ ¼ aTðbÞÞ for all a; b∈R. The map T is
called a centralizer if it is a left and a right centralizer. The characterization of centralizers on
algebras or rings has been a widely discussed subject in various areas of mathematics.

In [11] Zalar proved the following interesting result: if R is a 2 -torsion free semiprime ring
and T is an additive mapping such that Tða2Þ ¼ TðaÞa ðorTða2Þ ¼ aTðaÞÞ, then T is a
centralizer. Vukman [10] considered additive maps satisfying similar conditions, namely
2Tða2Þ ¼ TðaÞaþ aTðaÞ for any a∈R, and showed that if R is a 2 -torsion free semiprime
ring then T is also a centralizer. Since then, the centralizers have been intensively
investigated by many mathematicians (see, e.g., [2–5,7]).

Let R be a ring. An additive map f : R→R, is called a Jordan centralizer of R if

∀x; y ∈ Rf ðxyþ yxÞ ¼ xf ðyÞ þ f ðyÞx: (1)
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Recently, Ghomanjani and Bahmani [8] dealt with the structure of Lie centralizers of trivial
extension algebras, whereas Fo�sner and Jing [6] studied Lie centralizers of triangular rings.

The inspiration of this paper comes from the articles [1,4,6] in which the authors deal with
the Lie centralizermaps of triangular algebras and rings. In this note wewill consider nonlinear
Jordan centralizers on strictly upper triangular matrices over a field of zero characteristic.

Throughout this article, F is a field of zero characteristic. Let MnðFÞ and NnðFÞ denote
the algebra of all n3 nmatrices and the algebra of all n3 n strictly upper triangular matrices
over F , respectively. We use diagða1; a2; . . . ; anÞ to represent a diagonal matrix with
diagonal ða1; a2; . . . ; anÞ where ai ∈F . The set of all n3 n diagonal matrices over F is

denoted by DnðFÞ. Let In be the identity inMnðFÞ; J ¼ Pn−1
i¼1 Ei;iþ1 and fEij : 1≤ i; j ≤ ng

the canonical basis of MnðFÞ, where Eij is the matrix with 1 in the ði; jÞ position and zeros
elsewhere. By CNnðFÞðXÞwe will denote the centralizer of the element X in the ring NnðFÞ.

The notation f : NnðFÞ→NnðFÞ means a nonlinear map satisfying ∀X ; Y ∈ NnðFÞ :
f ðXY þ Y XÞ ¼ X f ðY Þ þ f ðY ÞX.

Notice that it is easy to check that the ZðNnðFÞÞ ¼ FE1n.
The main result in this paper is the following:

Theorem 1. Let F be a field of zero characteristic. If f : NnðFÞ→NnðFÞ is a nonlinear
Jordan centralizer then there exists λ∈F and a map η : NnðFÞ→ZðNnðFÞÞ satisfying
ηðXY þ Y XÞ ¼ 0 for every X ; Y in NnðFÞ such that f ðXÞ ¼ λX þ ηðXÞ for all X in NnðFÞ.

2. Proof of the main result
Let us start with some basic properties of Lie centralizers.

Lemma 2. Let f be a nonlinear Jordan centralizer of NnðFÞ. Then
(1) f ð0Þ ¼ 0;

(2) For every X ; Y ∈ NnðFÞ, we have f ðXY þ Y XÞ ¼ Yf ðXÞ þ f ðXÞY.
Proof. To prove (1) it suffices to notice that

f ð0Þ ¼ 0f ð0Þ þ f ð0Þ0 ¼ 0:

(2) Observe that if f ðXY þ YXÞ ¼ Yf ðXÞ þ f ðXÞY , Interchanging X and Y in the above
identity, we have f ðXY þ YXÞ ¼ Yf ðXÞ þ f ðXÞY . -

Lemma 3. Let f be a nonlinear Jordan centralizer of NnðFÞ. Then
(1) f ðPn−1

i¼1 ai Ei;iþ1Þ ¼
Pn−1

i¼1 bi Ei;iþ1;

(2) There exists λ∈F such that f ðJÞ ¼ λJ.

Proof. Let D ¼ Pn
i¼1 αi Ei;i ∈DnðFÞ, As F is infinite, we can find a set fαi ∈F=1≤ i≤ ng

whose elements satisfy conditions: αi þ αiþ1 ¼ 1 for 1≤ i ≤ n− 1and αi þ αj ≠ 1 for j≠ i þ 1.

(1) ConsiderA∈MnðFÞ. It is well known thatDAþ AD ¼ A if and only ifA ¼ Pn
i¼1 ai Ei;iþ1:

Hence, if A ¼ Pn−1
i¼1 ai Ei;iþ1; , we have A ¼ DAþ AD. Thus f ðAÞ ¼ f ðDAþ ADÞ ¼

Df ðAÞ þ f ðAÞD. Therefore f ðAÞ ¼ Pn−1
i¼1 bi Ei;iþ1:

(2) As in (1), let N ¼ Pn−1
i¼1 ð−1Þi Ei;iþ1 ∈ NnðFÞ, consider A ¼ Pn−1

i¼1 ai Ei;iþ1: for some
ai ∈F . Then NAþ AN ¼ 0 if and only if A ¼ aJ for some a∈F .

Indeed, f ðJÞ ¼ Pn−1
i¼1 ai Ei;iþ1:by (1). Thus, 0 ¼ f ð0Þ ¼ f ðNAþ ANÞ ¼ Nf ðAÞ þ f ðAÞN.

Hence, there exists λ∈F such that f ðJÞ ¼ λJ. -
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We will need the following lemma.

Lemma 4 (Lemma 2.1, [9]). Suppose thatF is an arbitrary field. If G; H ∈UTnðFÞ are such
that gi;iþ1 ¼ hi;iþ1 ≠ 0 for all 1≤ i≤ n− 1, then G and H are conjugated in UTnðFÞ.

Here UTnðFÞ is the multiplicative group of n3 n upper triangular matrices with only 1’s
in the main diagonal. From the lemma above we obtain the following corollary.

Corollary 5. Let F be a field. For every A ¼ P
1≤i<j≤n aij Eij, where ai;iþ1 ≠ 0 for all

1≤ i≤ n− 1, there exists B∈TnðFÞ such that B−1AB ¼ J and TnðFÞ is the ring of upper
triangular matrices.

Proof. Let A be a matrix in NnðFÞ of the mentioned form. Then In þ A is a unitriangular
matrix. Let us notice first that there exists B1 ∈DnðFÞ such that ðB−1

1 AB1Þi;iþ1 ¼ 1 for all
i∈ℕ. We can construct B1 ∈DnðFÞ recursively by:

ðB1Þ11 ¼ 1; ðB1Þiþ1;iþ1 ¼ ðB1Þii$ðAi;iþ1Þ−1for i≥ 1:

Consider the matrix In þ B−1
1 AB ∈ UTnðFÞ. The unitriangular matrices In þ J and

In þ B−1
1 AB fulfill the condition in Lemma 4. Hence, there exists B2 ∈UTnðFÞ such that

In þ J ¼ B−1
2 ðIn þ B−1

1 AB1ÞB2. Then J ¼ B−1
2 ðB−1

1 AB1ÞB2. Taking B ¼ B1B2 ∈TnðFÞ, we
get J ¼ B−1AB as wanted. -

Lemma 6. Let A ¼ P
i<j aij Eij be a matrix in NnðFÞ with ai;iþ1 ≠ 0 for every

i ¼ 1; . . . ; n− 1. Then there exists λA ∈F such that f ðAÞ ¼ λAA.

Proof. Since A ¼ P
1≤i<j≤n aij Eij, where ai;iþ1 ≠ 0, there exists T ∈TnðFÞ such that

T AT−1 ¼ J by the previous corollary. Define h : NnðFÞ→ NnðFÞ by hðXÞ ¼ T f ðT−1XTÞ
T−1. Then h is a nonlinear Jordan centralizer map. Indeed, ∀X ; Y ∈ NnðFÞ, we have:

hðXY þ Y XÞ ¼ T f
�
T−1ðXY þ Y XÞTÞT−1

¼ T f
�
T−1ðXY þ Y XÞTÞT−1

¼ T f
�
T−1XT T−1Y T þ T−1Y T T−1XT

�
T−1

¼ T f
��
T−1XT

��
T−1Y T

�þ �
T−1Y T

��
T−1XT

��
T−1

¼ T
��
T−1XT

�
f
�
T−1Y T

�þ f
�
T−1Y T

��
T−1XT

��
T−1

¼ XT f
�
T−1Y T

�
T−1 þ T f

�
T−1Y T

�
T−1X

¼ XhðY Þ þ hðY ÞX

Hence, hðJÞ ¼ λAJ by lemme 2.2. Then

T f ðAÞT−1 ¼ T f
�
T−1ðT AT−1

�
TÞT−1 ¼ hðJÞ ¼ λAJ ¼ λAT AT−1:

Multiplying the left and right sides by T−1 and T respectively yields f ðAÞ ¼ λAA. -
Now we wish to extend Lemma 2.3 to all elements of NnðFÞ. In order to do this, let us

introduce the following set:

S ¼ �
B ¼ ðbijÞ∈NnðFÞ : bi;iþ1 ≠ 0 ∀ i ¼ 1; . . . ; n� 1

�
:

This set has an important property that is established below.
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Lemma 7. Let F be a field. Every element of NnðFÞ can be written as a sum of at most two
elements of S.
Proof. If ai;iþ1 ≠ 0 for all i ¼ 1; . . . ; n− 1, thenAbelongs toS, so there is nothing to prove. If
A is not in S, then we can define B1 and B2 as follows:

ðB1Þij ¼
�
ai;iþ1 � bi if j ¼ i þ 1
aij if j > i þ 1;

ðB2Þij ¼
�
bi if j ¼ i þ 1
0 otherwise;

where bi is an element in F different from ai;iþ1. It is easy to see that B1; B2 are in S, and
A ¼ B1 þ B2, so we wanted. -

Lemma 8. Let F be a field. For arbitrary elements A;B of NnðFÞ, there exists λA;B ∈F such
that

f ðAþ BÞ ¼ f ðAÞ þ f ðBÞ þ λA;B E1n:

Proof. For any A; B; X of NnðFÞ, we have
f ððAþ BÞX þ XðAþ BÞÞ ¼ Xf ðAþ BÞ þ f ðAþ BÞX

¼ Xf ðAþ BÞ þ f ðAþ BÞX
¼ Af ðXÞ þ f ðXÞAþ Bf ðXÞ þ f ðXÞB
¼ f ðAX þ XAÞ þ f ðBX þ XBÞ
¼ Xf ðAÞ þ f ðAÞX þ Xf ðBÞ þ f ðBÞX

hence

Xðf ðAÞ þ f ðBÞ � f ðAþ BÞÞ ¼ ðf ðAþ BÞ � f ðBÞ � f ðAÞÞX
which implies that ðf ðAþ BÞ – f ðAÞ – f ðBÞÞ2 ∈ZðNnðFÞÞ. Thus, there exists λA;B ∈F such
that f ðAþ BÞ ¼ f ðAÞ þ f ðBÞ þ λA;B E1n. -

Now we can prove the main theorem.

Proof of Theorem 1. For every X ∈NnðFÞ there exists a A; B∈S such that X ¼ Aþ B.
First take A; B∈S such that ABþ BA≠ 0. Then, by Lemma 2.3, f ðAÞ ¼ λAA;

f ðBÞ ¼ λB B for some λA; λB ∈F . Since f is nonlinear Jordan centralizer map, the
following holds:

f ðABþ BAÞ ¼ Af ðBÞ þ f ðBÞA ¼ B f ðAÞ þ f ðAÞB
we must have λA ¼ λB.

Consider now A andB from S such thatABþ BA ¼ 0. Then there exists C ∈S such that
the pairs C andA; C andB, C are AC þ C A ≠ 0 and BC þ CB ≠ 0, so we have λA ¼ λC
and λB ¼ λC.

Thus, there exists λ∈F , η : NnðFÞ→ZðNnðFÞÞ nonlinear Jordan centralizer map such
that f ðXÞ ¼ λX þ ηðXÞ for all X ∈NnðFÞ.

we have

f ðXY þ Y XÞ ¼ λðXY þ Y XÞ þ ηðXY þ Y XÞ
¼ Xf ðY Þ þ f ðY ÞX
¼ XðλY þ ηðY ÞÞ þ ðλY þ ηðY ÞÞX
¼ λðXY þ Y XÞ þ XηðY Þ þ ηðY ÞX

we obtain that ηðXY þ Y XÞ ¼ XηðY Þ þ ηðY ÞX for all X ;Y ∈NnðFÞ.
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Now we use Lemma 2.5 we get f ðXÞ ¼ λX þ ηðXÞ for all X ∈NnðFÞ, where
η : NnðFÞ→ZðNnðFÞÞ is a nonlinear Jordan centralizer map and ηðXÞ ¼ 0 for allX ∈S: ,
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