The Q_{0}-matrix completion problem

Kalyan Sinha
Department of Mathematics, A.B.N. Seal College, Coochbehar, India

Abstract

A matrix is a Q_{0}-matrix if for every $k \in\{1,2, \ldots, n\}$, the sum of all $k \times k$ principal minors is nonnegative. In this paper, we study some necessary and sufficient conditions for a digraph to have Q_{0}-completion. Later on we discuss the relationship between Q and Q_{0}-matrix completion problem. Finally, a classification of the digraphs of order up to four is done based on Q_{0}-completion.

Keywords Partial matrix, Matrix completion, Q_{0}-matrix, Q_{0}-completion, Digraph

1. Introduction

A partial matrix is a real square matrix with some specified entries while other entries are unspecified. By completion of a partial matrix, we have to choose specific values for the unspecified entries. The matrix completion problem studies those partial matrices which have desired type of completions.

A real $n \times n$ matrix A is a P-matrix (P_{0}-matrix) if every principal minor of A is positive (nonnegative). A real $n \times n$ matrix $B=\left[b_{i j}\right]$ is a Q-matrix if for every $k \in\{1,2, \ldots, n\}$, $S_{k}(B)>0$, where $S_{k}(B)$ is the sum of all $k \times k$ principal minors of B. The matrix B is Q_{0}-matrix if for every $k \in\{1,2, \ldots, n\}, S_{k}(B) \geq 0$. Clearly a Q-matrix is a Q_{0}-matrix but not conversely.

A partial Q-matrix C is a partial matrix in which $S_{k}(C)>0$ for every $k \in\{1,2, \ldots, n\}$ for which all $k \times k$ principal submatrices are fully specified. Similarly a partial $Q_{0}-$ matrix C_{1} is a partial matrix in which $S_{k}\left(C_{1}\right) \geq 0$ for every $k=1, \ldots, n$.

To make a completion of a partial matrix, a specific choice of value for the unspecified entries is chosen. Thus the main motive of matrix completion problem is to investigate the properties of partial matrices and find out those partial matrices which have a particular type of completions. In the last few years, research is done for different classes of matrices in the area of Matrix Completion Problems. Several researchers have developed many results of matrix completion problems for different classes of matrices including P and P_{0}, Q-matrices (e.g.,[2-5,7,8,10,14]). To see the details of the definition and properties of different classes of partial matrices (i.e P, P_{0} or Q-partial matrices) and results regarding matrix completion problems, we suggest [9].

From the beginning of matrix completion problems, we have found that graphs and digraphs are widely used in solving the matrix completion problems. A digraph D is a pair

JEL Classification — MSC: 15A18

© Kalyan Sinha. Published in Arab Journal of Mathematical Sciences. Published by Emerald Publishing Limited. This article is published under the Creative Commons Attribution (CC BY 4.0) license. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this license may be seen at http://creativecommons.org/licences/by/4.0/ legalcode

The publisher wishes to inform readers that the article "The Q_{0}-matrix completion problem" was originally published by the previous publisher of the Arab Journal of Mathematical Sciences and the pagination of this article has been subsequently changed. There has been no change to the content of the article. This change was necessary for the journal to transition from the previous publisher to the new one. The publisher sincerely apologises for any inconvenience caused. To access and cite this article, please use Sinha, K. (2019), "The Q_{0}-matrix completion problem", Arab Journal of Mathematical Sciences, Vol. 27 No. 1, pp. 119-128. The original publication date for this paper was 26/08/2019.
(V, A), where V is a finite nonempty set of objects, called vertices, and A is a set of ordered pairs of vertices, called arcs or directed edges. We use V_{D} and A_{D} to denote the vertex set and the arc set of D respectively and we write frequently $v \in D$ (respectively, $(u, v) \in D$) to say that $v \in V(D)$ (respectively $(u, v) \in A(D))$. An $\operatorname{arc} x=(u, u)$ in the arc set of a digraph D, which is called a loop at the vertex u is allowed in our given definition. Most of the graph-theoretic terms used in this article can be found in any standard book, for example [1,6]. However for the convenience of the readers' of this article, we request them to follow the introduction part of the article [11-13].

In this paper, we have studied the (combinatorial) Q_{0}-matrix problem. In Section 2, we have defined the partial Q_{0}-matrix and the Q_{0}-matrix completion problem. We have discussed the relationship between digraphs and Q_{0}-completion in Section 3. We have discussed some necessary and sufficient conditions for Q_{0}-matrix completion problem in Section 4. In Section 5, we tried to find out the relationship between Q and Q_{0}-matrix completion problem. Finally in Section 6, we have singled out of all digraphs of order up to 4 with Q_{0}-matrix completion.

2. Partial Q_{0}-matrices and their completion problem

A partial Q_{0}-matrix $C=\left[c_{i j}\right]$ is a partial matrix in which $S_{k}(C) \geq 0$ for every $k=1, \ldots, n$ for which all $k \times k$ principal submatrices of C are fully specified. In Proportion 2.1, we characterize $C=\left[c_{i j}\right]$ as follows.

Proposition 2.1. Suppose $C=\left[c_{i j}\right]$ is a partial matrix. Then C is a partial Q_{0}-matrix if and only if exactly one of the following holds:
(i) At least one diagonal entry of C is not specified.
(ii) All diagonal entries are specified so that $\operatorname{Tr}(M) \geq 0$ and C has an off diagonal unspecified entry.
(iii) All entries of C are specified and C is a Q_{0}-matrix.

A completion A of a partial Q_{0}-matrix C is called a Q_{0}-completion of C, if A is a Q_{0}-matrix. If A is a Q_{0}-matrix, then any matrix which is permutation similar to A is a Q_{0}-matrix. As a consequence any digraph isomorphic to D which has Q_{0}-completion also has Q_{0}-completion.

Any partial Q_{0} matrix C with all unspecified diagonal entries has Q_{0}-completion. By choosing sufficiently large values for the unspecified diagonal entries, the desired Q_{0}-completion of C is obtained. Now consider a partial Q_{0}-matrix C with unspecified diagonal entries at (i, i) positions $(i=k+1, \ldots, n)$. We may not get a Q_{0}-completion of C in case $C[1, \ldots, k]$ is fully specified. To see this, the partial matrix,

$$
C=\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & -1 & 1 \\
1 & 1 & ?
\end{array}\right]
$$

where? denotes an unspecified entry, does not have Q_{0}-completion. For any completion A of C, we have $S_{2}(A) \leq 0$. However, if $C[1, \ldots, k]$ has an unspecified entry and has a Q-completion, then C has a Q_{0}-completion. By choosing sufficiently large values for the unspecified diagonal entries, a Q_{0}-completion of C can be obtained. We write our observations in the following results:

Theorem 2.2. If a matrix C omits all diagonal entries, then C has Q_{0}-completion.

Theorem 2.3. Suppose C be a partial Q_{0}-matrix in which the diagonal entry at $(r+1, r+1)$ position is unspecified. If the principal submatrix $C[1, \ldots, r]$ of C is not fully specified and has Q-completion, then C has Q_{0}-completion.
Corollary 2.4. Suppose C be a partial Q_{0}-matrix in which the diagonal entries at (i, i) positions $(i=r+1, \ldots, n)$ are unspecified. If the principal submatrix $C[1, \ldots, r]$ of C is not fully specified and has Q-completion, then C has Q_{0}-completion

The following example shows that the converse of Corollary 2.4 is not true.
Example 2.5. Consider the partial matrix,

$$
C=\left[\begin{array}{cccc}
? & c_{12} & ? & ? \\
c_{21} & d_{2} & ? & c_{24} \\
c_{31} & c_{32} & ? & ? \\
c_{41} & ? & c_{43} & d_{4}
\end{array}\right],
$$

where? denotes the unspecified entries. We show that C has Q_{0}-completions, though there are occasions when $C[2,4]$ does not have Q-completion. For $t>0$, consider the completion $B(t)$ of C defined as follows:

$$
B(t)=\left[\begin{array}{cccc}
t & c_{12} & 0 & 0 \\
c_{21} & d_{2} & t & c_{24} \\
c_{31} & c_{32} & t & t \\
c_{41} & t & c & d_{4}
\end{array}\right] .
$$

Then,

$$
\begin{aligned}
& S_{1}(B(t))=2 t+\sum d_{i}, \\
& S_{2}(B(t))=t^{2}+f_{1}(t) \\
& S_{3}(B(t))=t^{3}+f_{2}(t), \\
& S_{4}(B(t))=t^{4}+f_{3}(t),
\end{aligned}
$$

where $f_{i}(t)$ is a polynomial in t of degree at most $i, i=1,2,3$. Consequently, $B(t)$ is a Q_{0}-matrix for sufficiently large t, and therefore, C has Q_{0}-completion. However, the partial Q-matrix

$$
C[2,4]=\left[\begin{array}{cc}
0 & 0 \\
x_{42} & 1
\end{array}\right]
$$

with unspecified entry x_{42}, is the principal submatrix of C induced by its diagonal $\{2,4\}$. That $C[2,4]$ does not have Q-completion is evident, because $S_{2}(M[2,4])=0$ for any completion of $C[2,4]$.

Remark 2.6. We can see that $C[1,2, \ldots, r]$ in Theorem 2.3 may not be a partial Q-matrix. If all the specified diagonal entries are zero, then Theorem 2.3 does not hold automatically. Also Example 2.5 shows that $C[2,4]$ may not have Q_{0}-completion. To see that consider a partial Q_{0}-matrix

$$
C[2,4]=\left[\begin{array}{ll}
-1 & 0 \\
x_{42} & 1
\end{array}\right],
$$

Figure 1.
The digraph D.
with unspecified entry x_{42}. $C[2,4]$ does not have Q_{0}-completion since for any completion B_{1} of $C[2,4]$, we have $S_{2}(C[2,4]) \leq 0$.

3. Digraphs and Q_{0}-completions

An $n \times n$ partial matrix C specifies a digraph $D=\left(\{1,2, \ldots, n\}, A_{D}\right)$ if for $1 \leq i, j \leq n$, $(i, j) \in A_{D}$ if and only if the (i, j) th entry of C is specified. As an example, we can see that the partial Q_{0}-matrix C in Example 2.5 specifies the digraph D in Figure 1.

Theorem 3.1. Suppose C is a partial matrix specifying the digraph D. If the partial submatrix of Cinduced by every strongly connected induced subdigraph of D has Q_{0}-completion, then C has Q_{0}-completion.
Proof. First we consider the case when D has two strong components say, D_{1} and D_{2}. Later on the general result will automatically follow from induction. If required, by a relabelling of the vertices of D, we have

$$
C=\left[\begin{array}{cc}
C_{11} & C_{12} \\
X & C_{22}
\end{array}\right],
$$

where $C_{i i}$ is a partial Q_{0}-matrix specifying $D_{i}, i=1,2$, and X contains all unspecified entries. Now, we have $C_{i i}$ has a Q_{0}-completion $B_{i i}$. Consider the completion

$$
B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]
$$

by choosing all entries in X as well as all unspecified entries in C_{12} as 0 . Then, for $2 \leq k \leq|D|$ we have,

$$
S_{k}(B)=S_{k}\left(B_{11}\right)+S_{k}\left(B_{22}\right)+\sum_{r=1}^{k-1} S_{r}\left(B_{11}\right) S_{k-r}\left(B_{22}\right) \geq 0
$$

Here, we mean $S_{k}\left(B_{i i}\right)=0$ whenever k exceeds the size of $B_{i i}$. Thus C can be completed to a Q_{0}-matrix

The proof of the following result is similar.
Theorem 3.2. Suppose C is a partial matrix specifying the digraph D. If the partial submatrix of C induced by each component of D has a Q_{0}-completion, then C has a Q_{0}-completion.

The converse of Theorem 3.1 is not true. For example, every partial Q_{0}-matrix specifying the digraph D in Figure 1 has Q_{0}-completion, although the strong component D_{1} induced by vertices $\{1,2\}$ does not have Q_{0}-completion (see Example 3.3).

Example 3.3. Consider the digraph D in Figure 1. We show that D has Q_{0}-completion, but the strong component D_{1} induced by vertices $\{1,2\}$ does not have Q_{0}-completion. Let $C=\left[c_{i j}\right]$ be a partial Q_{0}-matrix specifying D. Then for $t>0, C$ can be completed to a Q_{0}-matrix $B(t)$ (see Example 2.5) but the principal submatrix induced by the digraph D_{1} i.e. $C[1,2]$ does not have Q_{0}-completion. To see that $C[1,2]$ does not have Q_{0}-completion, consider the partial Q_{0}-matrix

$$
C[1,2]=\left[\begin{array}{cc}
x & 0 \\
0 & -1
\end{array}\right],
$$

with unspecified entry x. Then for any Q_{0}-completion B of $C[1,2]$, we have $S_{2}(B) \leq 0$ and hence $C[1,2]$ does not have Q_{0}-completion.

The property of having Q_{0}-completion is not hereditary which can be also seen from Example 2.5.

4. The Q_{0}-completion problem

A digraph D has Q_{0}-completion, if every partial Q_{0}-matrix specifying D can be completed to a Q_{0}-matrix. The main motive of Q_{0}-matrix completion problem is to study and classify all digraphs D based on Q_{0}-completion.

4.1 Sufficient conditions for Q_{0}-matrix completion

Theorem 4.1. If a digraph $D \neq K_{n}$ of order n has Q_{0}-completion, then any spanning subdigraph of D has Q_{0}-completion.

Proof. Suppose H be a spanning subdigraph of D and C_{H} be a partial Q_{0}-matrix specifying the digraph H. Consider a partial matrix C_{D} obtained from C_{H} by specifying the entries corresponding to $(i, j) \in C_{D} \backslash C_{H}$ as 0 . Since $D \neq K_{n}$, by Proposition 2.1, C_{D} is a partial Q_{0}-matrix specifying D. Let B be a Q_{0}-completion of C_{D}. Clearly, B is a Q_{0}-completion of C_{H}.

Theorem 4.2. Suppose $D \neq K_{n}$ be a digraph such that \bar{D} is stratified. If it is possible to sign the arcs of \bar{D} so that the sign of every cycle in D is of positive sign, then D has Q_{0}-completion.

Proof. Suppose C be a partial Q_{0}-matrix specifying the digraph D. For any $t>0$, consider a completion B of C by choosing the unspecified entry $x_{i j}=\operatorname{sgn}(i, j) t$ (using the sign of the arc in $\bar{D})$. Then for each $k=2,3, \ldots, n$, we have,

$$
\begin{equation*}
S_{k}(B)=c_{k} k^{k}+r_{k}(t) \tag{1}
\end{equation*}
$$

where c_{k} is the number of permutation subdigraphs of order k in D and $r_{k}(t)$ is a polynomial of degree less than k. If D contains all loops, then the trace of any partial Q_{0}-matrix specifying D is nonnegative; if D omits a loop, then $S_{1}(B)=c_{1} t+r_{0}$, where c_{1} is the number of loops in D and $r_{0} \in R$. Now by choosing t sufficiently large results, B becomes a Q_{0}-matrix.

Example 4.3. Consider the complement \bar{D} in Figure 2 of the digraph D in Figure 1. It can be easily seen that the digraph \bar{D} is stratified. Also it is possible to sign the arcs of \bar{D} with positive sign, thus by Theorem 4.2 the digraph D has Q_{0}-completion.

Corollary 4.4. If D is a digraph and D has a stratified spanning subdigraph that has a signing in which the sign of every cycle is + , then D has Q_{0}-completion.

4.2 Necessary conditions for Q_{0}-matrix completion

In this section we provide some necessary conditions for a digraph to have Q_{0}-completion.
Theorem 4.5. Suppose D be a digraph of order n which includes all loops. If \bar{D} has no 2 -cycle, then D does not have Q_{0}-completion.

AJMS

124

Figure 2.
The digraph \bar{D}.

Proof. Let D be a digraph of order n which includes all loops. Suppose $C=\left[c_{i j}\right]$ be a partial Q_{0}-matrix specifying the digraph D which is defined as follows:

$$
c_{i j}= \begin{cases}1, & \text { if }(i, j)=(1,1),(i, j) \in D \\ -1, & \text { if }(i, j)=(2,2),(i, j) \in D \\ 0, & \text { for all }(i, j) \in D \backslash\{(1,1),(2,2)\}\end{cases}
$$

It is clear that C is a partial Q_{0}-matrix specifying D. Now \bar{D} does not contain a 2-cycle, then for any completion B of C, we have $S_{2}(B) \leq 0$. Thus D does not have Q_{0}-completion.

Example 4.6. Consider the digraph D_{2} In Figure 3. Suppose

$$
C=\left[\begin{array}{cc}
1 & 0 \\
? & -1
\end{array}\right],
$$

be a partial Q_{0}-matrix specifying the digraph D_{2}. Then for any completion B of C, we have $S_{2}(B) \leq 0$ by Theorem 4.5. Hence, C cannot be completed to a Q_{0}-matrix.

Corollary 4.7. If a digraph D of order nincludes all loops and has Q_{0}-completion, then \bar{D} must not be a tournament or subdigraph of a tournament.

Proof. If D is a tournament or a subdigraph of a tournament, then it does not contain a 2 -cycle. Hence, the result follows.

The converse of Theorem 4.5 is not true which follows from Example 4.8.
Example 4.8. Consider the digraph D_{3} in Figure 4. The complement of the digraph D_{3} i.e. \bar{D}_{3} contains a 2-cycle. But D_{3} does not have Q_{0}-completion. Consider a partial Q_{0}-matrix

Figure 3.
The digraph D_{2}.

Figure 4.
The digraph D_{3}.

$$
C=\left[\begin{array}{cccc}
0 & 1 & x_{13} & 0 \\
1 & 0 & 0 & 0 \\
x_{31} & 0 & 1 & 0 \\
x_{41} & 0 & 0 & 0
\end{array}\right],
$$

specifying the digraph D_{3}. Then for any completion B of C, we have $S_{3}(B) \leq 0$. Hence, C cannot be completed to a Q_{0}-matrix.

5. Comparison between Q-completion and Q_{0}-completion

Although every Q-matrix is a Q_{0}-matrix, but the completion problem of these two classes is different. We list these observations in the following result.

Theorem 5.1. If a digraph D has Q_{0}-completion, then it must also have Q-completion.
Proof. Suppose D be a digraph that has Q_{0}-completion and M be a partial Q-matrix specifying the digraph D. Then, the sums of all fully specified principal minor of same order of M are positive. Since the determinant and each principal minor of a matrix are a continuous function of its entries, there is $\epsilon>0$ such that the partial matrix M_{0} obtained from M by decreasing the specified diagonal entries by ϵ is a partial Q-matrix. Since a partial Q-matrix is a partial Q_{0}-matrix, M_{0} is a partial Q_{0}-matrix specifying D. Consequently, M_{0} has a Q_{0}-completion B_{0}. We now have a Q-completion of M, namely, $B=B_{0}+\epsilon I$, where I is the identity matrix.

The following equivalent corollary is immediate.
Corollary 5.2. Any digraph which does not have Q-completion does not have Q_{0}-completion.

But the converse of Theorem 5.1 is not completely true which can be seen in the following two cases.

Case 1. Suppose D includes all loops. In this case D has Q-completion but does not have Q_{0}-completion.

Example 5.3. Consider the symmetric 4-cycle C_{4} (Figure 5) which includes all loops. Now C_{4} has Q-completion (see Example 2.2 of [4]). To see that C_{4} does not have Q_{0}-completion, consider the partial Q_{0}-matrix

$$
M=\left[\begin{array}{cccc}
0 & 0 & x_{13} & 0 \\
0 & 1 & 0 & x_{24} \\
x_{31} & 0 & 0 & 1 \\
0 & x_{42} & 1 & -1
\end{array}\right]
$$

specifying C_{4}. For a completion B of M, the 3×3 principal minor is given by

Figure 5.
The digraph D.

$$
\begin{aligned}
& B(1,2,3)=-x_{13} x_{31} \\
& B(1,2,4)=0 \\
& B(1,3,4)=x_{13} x_{31} \\
& B(2,3,4)=-1
\end{aligned}
$$

Then we have $S_{3}(B)=-1 \leq 0$ and M cannot be completed to a Q_{0}-matrix.
Case 2. Suppose D omits at least a loop. Then we have the following theorem:
Theorem 5.4. Suppose D be a digraph such that D omits at least a loop. If D has Q-completion, then D must have Q_{0}-completion.

Proof. Suppose M be a partial Q_{0}-matrix specifying D. Since D omits at least a loop, thus at least a diagonal entry of M is unspecified. Thus M is a partial Q-matrix. Since D has Q-completion, M can be completed to a Q-matrix B. Consequently, B is a Q_{0}-matrix.

6. Q_{0}-Completion of digraphs of small order

With the help of the results obtained in the previous sections, we will sort out all digraphs of order ≤ 4 which have loops at all its vertices and have Q_{0}-completion. In this regard we will take the help of the nomenclature of the digraphs as per their order in [6, Appendix, p. 233]. Here, $D_{p}(q, n)$ denotes the nth member digraph with loop at each p vertices and it has q (non-loop) arcs.

As we know that any matrix under permutation similarity to a Q_{0}-matrix is also a Q_{0}-matrix, if a digraph D has Q_{0}-completion, then any isomorphic digraph of D has Q_{0}-completion, that is, any digraph obtained by labelling the unlabelled digraph associated to D has Q_{0}-completion.

Clearly, any digraph of order 1 (with or without a loop) has Q_{0}-completion. There are only two non-isomorphic digraphs of order 2 with loops say, $D_{2}(0,1)$ and $D_{2}(2,1)$ have Q_{0}-completion.

The rest of the section is broken up into a series of lemmas.
Lemma 6.1. For $1 \leq p \leq 4$, the digraphs $D_{p}(q, n)$ which are listed below do not have Q_{0}-completion.

$$
\begin{array}{lll}
p=2 ; & q=2 ; & n=1 \\
p=3 ; & q=3 ; & n=2,3 \\
& q=4 ; & n=2,3,4 \\
& q=5 ; & n=1 \\
p=4 ; & q=6 ; & n=45-48 \\
& q=7 ; & n=29-38 \\
& q=8 ; & n=16-27 \\
& q=9 ; & n=4-13 \\
& q=10 ; & n=1-5 \\
& q=11 ; & n=1 .
\end{array}
$$

Proof. Each of the digraphs listed above satisfies Theorem 4.5 and hence the result follows.

Lemma 6.2. The digraphs $D_{4}(7,2)$ and $D_{4}(8,2)$ do not have Q_{0}-completion.
Proof. In Example 5.3, it is seen that the digraph $D_{4}(8,2)$ (i.e. C_{4}) does not have Q_{0}-completion. Suppose

$$
M=\left[\begin{array}{cccc}
1 & 0 & x_{13} & 1 \\
0 & 0 & x_{23} & x_{24} \\
x_{31} & 0 & -1 & 0 \\
1 & x_{42} & 0 & 0
\end{array}\right]
$$

be a partial Q_{0}-matrix specifying the digraph $D_{4}(7,2)$. Now for any Q_{0}-completion B of M, we have $S_{3}(B)=-1$. Hence $D_{4}(7,2)$ does not have Q_{0}-completion.

Lemma 6.3. For $1 \leq p \leq 4$, the digraphs $D_{p}(q, n)$ which are listed below do not have Q_{0}-completion.

$$
\begin{array}{lll}
p=3 ; & q=2 ; & n=1,3,4 \\
& q=3 ; & n=1,4 \\
& q=4 ; & n=1 \\
p=4 ; & q=3 ; & n=8,11 \\
& q=4 ; & n=10,12,14,15,21,27 \\
& q=5 ; & n=4-6,11,14-17,19,21-24,26,28,29,31,34,36,37 \\
& q=6 ; & n=1,2,9-13,15-23,26,27,29,30,32-41,43,44 \\
& q=7 ; & n=1,3-28 \\
& q=8 ; & n=1,3-15 \\
& q=9 ; & n=1-3 .
\end{array}
$$

Proof. Each of the digraphs does not have Q-completion, thus by Corollary 5.2 the above digraphs do not have Q_{0}-completion.

Theorem 6.4. For $1 \leq p \leq 4$, the digraphs $D_{p}(q, n)$ which are listed below have Q_{0}-completion.

$$
\begin{array}{lll}
p=2 ; & q=0,2 ; & n=1 \\
p=3 ; & q=0,1 ; & n=1 \\
& q=2 ; & n=2 \\
& q=6 ; & n=1 \\
p=4 ; & q=0,1 ; & n=1 \\
& q=2 ; & n=1-5 \\
& q=3 ; & n=1-7,9,10,12,13 \\
& q=4 ; & n=1,3-9,11,13,16,17,19,20,22-26 \\
& q=5 ; & n=1,3,7,8,10,12,13,18,20,25,27,30,32,33,35,38 \\
& q=6 ; & n=7,24,25,28,31,42 \\
& q=12 ; & n=1 .
\end{array}
$$

Proof. The complement $\overline{D_{p}(q, n)}$ of each of the digraphs $D_{p}(q, n)$ is stratified and it is possible to sign the arcs of the $\overline{D_{p}(q, n)}$ with positive sign, thus by Theorem 4.2, each of the digraphs listed above has Q_{0}-completion.

Remark 6.5. In this paper, the Q_{0}-matrix completion is discussed. Some necessary and sufficient conditions for a digraph to have Q_{0}-completion are discussed. Although these conditions helped us to single out the digraphs of order at most 4 as to Q_{0}-completion, the problem is far from being completely solved. A complete characterization for a digraph to have Q_{0}-completion is still unresolved. Out of 218 digraphs of order 4, only 11 digraphs are still not singled out to have Q_{0}-completion or not. Since the Q_{0}-completion problem is not still
fully solved, thus the following digraphs $D_{p}(q, n), 1 \leq p \leq 4$ are not classified according to the Q_{0}-completion.

$$
\begin{array}{lll}
p=4 ; & q=4 ; & n=2,18 \\
& q=5 ; & n=2,9 \\
& q=6 ; & n=3-6,8,14
\end{array}
$$

References

[1] G. Chartrand, L. Lesniak, Graphs and Digraphs, fourth ed., Chapman and Hall/CRC, London, 2005.
[2] J.Y. Choi, L.M. DeAlba, L. Hogben, B. Kivunge, S. Nordstrom, M. Shedenhelm, The nonnegative P_{0}-matrix completion problem, Electron. J. Linear Algebra 10 (2003) 46-59.
[3] J.Y. Choi, L.M. DeAlba, L. Hogben, M.S. Maxwell, A. Wangsness, The P_{0}-matrix completion problem, Electron. J. Linear Algebra 9 (2002) 1-20.
[4] L.M. Dealba, L. Hogben, B.K. Sarma, The Q-matrix completion problem, Electron. J. Linear Algebra 18 (2009) 176-191.
[5] S.M. Fallat, C.R. Johnson, J.R. Torregrosa, A.M. Urbano, P-matrix completions under weak symmetry assumptions, Linear Algebra Appl. 312 (2012) 73-91.
[6] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[7] L. Hogben, Graph theoretic methods for matrix completion problems, Linear Algebra Appl. 319 (2000) 83-102.
[8] L. Hogben, Matrix completion problems for pairs of related classes of matrices, Linear Algebra Appl. 373 (2003) 13-29.
[9] L. Hogben, A. Wangsness, Matrix completion problems, in: L. Hogben (Ed.), HandBook of Linear Algebra, Chapman and Hall/CRC Press, Boca Raton, 2007.
[10] C.R. Johnson, B.K. Kroschel, The combinatorially symmetric P-matrix completion problem electronic, J. Linear Algebr. 1 (1996) 59-63.
[11] B.K. Sarma, K. Sinha, The positive Q-matrix completion problem, Discrete Math. Algorithms Appl. 7 (2015) http://dx.doi.org/10.1142/S1793830915500524.
[12] K. Sinha, The weakly sign symmetric Q-matrix completion problem, Plalestine J. Math. 6 (1) (2017) 314-323.
[13] K. Sinha, The Q_{1}-matrix completion problem, Malaya J. Math. 6 (2018) 443-450.
[14] A. Wangness, The Matrix Completion Problem Regarding Various Classes of $P_{0,1}$ Matrices (Ph.D Thesis) Iowa State University, 2005.

Further reading

[1] C. Jordan, J.R. Torregrosa, A.M. Urbano, Completions of partial P-matrices with acyclic or nonacyclic associated graph, Linear Algebra Appl. 312 (2000) 25-51.

Corresponding author

Kalyan Sinha can be contacted at: kalyansinha90@gmail.com

