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Cluj-Napoca, Romania

Abstract
The purpose of this paper is to study the coupled fixed point problem and the coupled best proximity
problem for single-valued and multi-valued contraction type operators defined on cyclic representations of
the space. The approach is based on fixed point results for appropriate operators generated by the initial
problems.

KeywordsMetric space, Single-valued operator, Multi-valued operator, Fixed point, Coupled fixed point, Best

proximity point, Coupled best proximity point, Generalized contraction, Data dependence, Ulam–Hyers

stability, Well-posedness

Paper type Original Article

1. Introduction
One of the most important metrical fixed point theorem, Banach contraction principle, has
been generalized in several directions, see for example [1]. The concept of coupled fixed point
was introduced by Guo and Lakshmikantham (see [2]). A new research direction for the
theory of coupled fixed points was developed by many authors (see [3–9]) using contractive
type conditions.

Definition 1.1 ([10]). Let X be a nonempty set. A pair ðx; yÞ∈X 3X is called coupled fixed
point of the operator F : X 3X →X if Fðx; yÞ ¼ x and Fðy; xÞ ¼ y. If Fðx; xÞ ¼ x then x is
called a strong coupled fixed point of F (or, in several papers, a fixed point of F).

Another generalization of the Banach principle was given by Kirk, Srinivasan and
Veeramani using the concept of cyclic operators.
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Definition 1.2 ([11]). Let A and B be nonempty subsets of a given set X. An operator
T : A∪B→A∪B is called cyclic if TðAÞ⊆B and TðBÞ⊆A.

More recently, Choudbury and Maity formulated the following definition.

Definition 1.3 ([12]). Let A and B be nonempty subsets of a given set X. An operator
F : X 3X →X having the property that for any x ∈ A and y ∈ B, Fðx; yÞ ∈ B and
Fðy; xÞ ∈ A, is called a cyclic operator with respect to A and B.

Definition 1.4 ([13]). Let A and B be nonempty subsets of a metric space ðX ; dÞ.
An operator F : X 3X →X is called a cyclic �Ciri�c operator with respect to A and B if F is
cyclic with respect to A and B and for some constant q∈ ð0; 1Þ, F satisfies the following
condition:

dðFðx; yÞ;Fðu; vÞÞ ≤ q$Mðx; v; y; uÞ;

where x; v ∈ A, y; u ∈ B, and

Mðx; v; y; uÞ ¼ max

�
dðx; uÞ; 1

2
dðu;Fðx; yÞÞ; 1

2
dðx;Fðu; vÞÞ;

1

2
½dðx;Fðx; yÞÞ þ dðu;Fðu; vÞÞ�

�
:

Theorem 1.1 ([13]). Let A and B be nonempty closed subsets of a complete metric space
ðX ; dÞ, F : X 3X →X a cyclic �Ciri�c type operator with respect to A and B, with A∩B≠ 0= .
Then F has a strong coupled fixed point in A∩B.

The first aim of this paper is to generalize the above theorem, weakening the contractive
condition and excluding the condition A∩B≠ 0=. We prove the uniqueness of the strong
coupled fixed point andwe provide an iterative method for approximating the strong coupled
fixed point.

We also present coupled fixed point and coupled best proximity point results for cyclic
coupled �Ciri�c-type multivalued operators.

On the other hand, some qualitative properties of the coupled fixed point set, such as data
dependence, generalized Ulam–Hyers stability and well-posedness are studied.

Our approach is based on the following idea: we transform the coupled fixed point/ best
proximity point problem into a fixed point/ best proximity point problem for an appropriate
operator defined on a cartesian product of the spaces. In this way, many coupled fixed point/
best proximity point results can be obtained using classical fixed point/ best proximity point
theorems.

2. Preliminaries
The standard notations and terminologies in nonlinear analysis will be used throughout
this paper.

Let ðX ; dÞ be a metric space. We denote:

PðXÞ :¼ fY ⊆X jY is nonemptyg;PbðXÞ :¼ fY ∈PðXÞ jY is boundedg;
PclðXÞ :¼ fy∈PðXÞ jY is closedg;PcpðXÞ :¼ fY ∈PðXÞ jY is compactg:

Let us define the following (generalized) functionals used in this paper:

• The gap functional

D : PðXÞ3PðXÞ→ℝþ; DðA;BÞ ¼ inffdða; bÞ j a∈A; b∈Bg;
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• The generalized excess functional

ρ : PðXÞ3PðXÞ→ℝþ ∪ fþ∞g; ρðA;BÞ ¼ supfDða;BÞ j a∈Ag;
• The generalized Pompeiu–Hausdorff functional

H : PðXÞ3PðXÞ→ℝþ ∪ fþ∞g;HðA;BÞ ¼ maxfρðA;BÞ; ρðB;AÞg:
There are several conditions upon the comparison function that have been considered in

literature. In this paper we shall refer only to:

Definition 2.1 ([14]).A function w : ℝþ →ℝþ is called a comparison function if it satisfies:

(i) w is increasing;

(ii) ðwnðtÞÞn∈ℕ converges to 0 as n→∞, for all t ∈ℝþ.

If the condition (ii) is replaced by the condition:

(iii)
P∞

k¼0w
kðtÞ < ∞, for any t > 0, then w is called a strong comparison function.

Lemma 2.1 ([1]). If w : ℝþ →ℝþ is a comparison function, then wðtÞ < t , for any t > 0 ,
wð0Þ ¼ 0 and w is continuous at 0.

Lemma 2.2 ([14]). If w : ℝþ →ℝþ is a strong comparison function, then the following hold:

(i) w is a comparison function;

(ii) the function s : ℝþ →ℝþ , defined by

sðtÞ ¼
X∞
k¼0

wkðtÞ;

is increasing and continuous at 0.

Example 2.1 ([15]). (1) w : ℝþ →ℝþ, wðtÞ ¼ at, where a∈ ½0; 1Þ, is a strong comparison
function;

(2) w : ℝþ →ℝþ, wðtÞ ¼ 1
2 t, for t ∈ ½0; 1� and wðtÞ ¼ t − 1

2, for t > 1, is a strong
comparison function;

(3) w : ℝþ →ℝþ, wðtÞ ¼ at þ 1
2 ½t�, where a∈ ð0; 12Þ, is a strong comparison function;

(4) w : ℝþ →ℝþ, wðtÞ ¼ t
1þt

, is a comparison function, but is not a strong comparison
function.

For more examples and considerations on comparison functions see [1] and the
references therein.

3. Coupled fixed points of cyclic �Ciri�c type single valued operators
In this section we present some coupled fixed point results for cyclic �Ciri�c type operators on
complete metric spaces.

We introduce now the following new concept.

Definition 3.1 Let ðX ; dÞ be a metric space, A;B∈PclðXÞ, Y ¼ A∪B and w: Rþ →Rþ a
strong comparison function. An operator F : Y 3Y →Y is called a cyclic coupled
w-contraction of �Ciri�c type if the following statements hold:

(i) F is cyclic with respect to A and B;
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(ii) dðFðx; yÞ;Fðu; vÞÞ≤wðMðx; v; y; uÞÞ; (3.1)

for any x; v∈A and y; u∈B, where

Mðx; v; y; uÞ ¼ max

�
dðx; uÞ; dðv; yÞ; dðx;Fðx; yÞÞ; dðu;Fðu; vÞÞ; dðv;Fðv; uÞÞ;

dðy;Fðy; xÞÞ; 1
2
½dðx;Fðu; vÞÞ þ dðu;Fðx; yÞÞ�;

1

2
½dðy;Fðv; uÞÞ þ dðv;Fðy; xÞÞ�

�
:

The following theorem (which is a particular case of Theorem 3.2 in [16]) will be used to
prove our results presented in this section.

Theorem 3.1 ([16]). Let ðX ; dÞ be a complete metric space, A;B∈PclðXÞ , w : ℝþ →ℝþ be a
strong comparison function and f : A∪B→A∪B be an operator such that f ðAÞ⊆B and
f ðBÞ⊆A . If f is a cyclic w -contraction of �Ciri�c type, that is

dðf ðxÞ; f ðyÞÞ≤w

�
max

�
dðx; yÞ; dðx; f ðxÞÞ; dðy; f ðyÞÞ;

1

2
½dðx; f ðyÞÞ þ dðy; f ðxÞÞ�

��
;

for any x∈A and y∈B , then the following statements hold:
(1) f has a unique fixed point x* ∈A∩B and the Picard iteration fxngn≥0 defined by

xn ¼ f ðxn−1Þ, n≥ 1 , converges to x* for any starting point x0 ∈A∪B;
(2) the following estimates hold:

dðxn; x*Þ ≤ sðwnðdðx0; x1ÞÞÞ; n≥ 1;
dðxn; x*Þ ≤ sðdðxn; xnþ1ÞÞ; n≥ 1;

(3) for any x∈A∪B, dðx; x*Þ≤ sðdðx; f ðxÞÞÞ , where s is given by Lemma 2.2.
The main result of this section is the following theorem.

Theorem 3.2. Let ðX ; dÞ be a complete metric space, A;B∈PclðXÞ, Y ¼ A∪B and
F : Y3Y →Y a cyclic coupled w -contraction of �Ciri�c type. Then:

(1) F has a unique strong coupled fixed point x* ∈A∩B;

(2) for any ðx0; y0Þ∈A3B, there exists a sequence fðxn; ynÞgn∈ℕ⊂X 3X defined by�
xn ¼ Fðyn−1; xn−1Þ
yn ¼ Fðxn−1; yn−1Þ ; n ≥ 1;

that converges to ðx; xÞ;
(3) the following estimates hold:

maxfdðxn; x*Þ; dðyn; x*Þg ≤ sðwnðmaxfdðx0;Fðx0; y0ÞÞ; dðy0;Fðy0; x0ÞÞgÞÞ; n≥ 1;
maxfdðxn; x*Þ; dðyn; x*Þg ≤ sðmaxfdðxn; xnþ1Þ; dðyn; ynþ1ÞgÞ; n≥ 1;

(4) for any x; y∈Y, dðx; x*Þ ≤ sðmaxfdðx;Fðx; yÞÞ; dðy;Fðy; xÞÞgÞ , where s is given by
Lemma 2.2.

Proof. ð1Þ−ð2Þ Changing the roles between x and v and similarly for y and u, the inequality
(3.1) becomes:
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dðFðv; uÞ;Fðy; xÞÞ≤wðMðv; x; u; yÞÞ; for x; v∈A and y; u∈B: (3.2)

Obviously, Mðx; v; y; uÞ ¼ Mðv; x; u; yÞ. From the inequalities (3.1) and (3.2) we obtain

maxfdðFðx; yÞ;Fðu; vÞÞ; dðFðy; xÞ;Fðv; uÞÞg≤wðMðx; v; y; uÞÞ: (3.3)

For z ¼ ðx; yÞ∈A3B, w ¼ ðu; vÞ∈B3A, denote

d*ðz;wÞ ¼ maxfdðx; uÞ; dðy; vÞg: (3.4)

Then ðX 3X ; d*Þ is a complete metric space.
Let T : Y 3Y →Y 3Y be defined by Tðx; yÞ ¼ ðFðx; yÞ;Fðy; xÞÞ. We have:

1

2
½d*ðz;TðwÞÞ þ d*ðw;TðzÞÞ� ¼ 1

2
maxfdðx;Fðu; vÞÞ; dðy;Fðv; uÞÞg

þ 1

2
maxfdðu;Fðx; yÞÞ; dðv;Fðy; xÞÞg

≥max

�
1

2
½dðx;Fðu; vÞÞ þ dðu;Fðx; yÞÞ�;
1

2
½dðy;Fðv; uÞÞ þ dðv;Fðy; xÞÞ�

�
:

Using the above relation, from (3.3) we get

d*ðTðzÞ;TðwÞÞ≤w

�
max

�
d*ðz;wÞ; d*ðz;TðzÞÞ; d*ðw;TðwÞÞ;
1

2
½d*ðz;TðwÞÞ þ d*ðw;TðzÞÞ�

��
;

(3.5)

for any z∈A3B, w∈B3A.
Because FðA3BÞ⊆B and FðB3AÞ⊆A, we have

TðA3BÞ⊆B3A and TðB3AÞ⊆A3B: (3.6)

(3.5) and (3.6) means that the operator T is a cyclic w-contraction of �Ciri�c type. Applying
Theorem 3.1, there exists a unique z* ¼ ðx*; y*Þ∈ ðA3BÞ∩ðB3AÞsuch thatTðz*Þ ¼ z* and
the Picard iteration zn ¼ Tðzn−1Þ converges to z* for any starting point z0 ∈Y . So�

Fðx*; y*Þ ¼ x*

Fðy*; x*Þ ¼ y*
(3.7)

where x*; y* ∈A∩B.
From unicity of the pair ðx*; y*Þ and the symmetry with respect to x* and y* of the

system (3.7) we conclude x* ¼ y*.
Then F has a unique strong coupled fixed point x* ∈A∩B and for any starting point

ðx0; y0Þ∈A3B there exists a sequence fðxn; ynÞgn∈ℕ⊂Y 3Y with�
xn ¼ Fðyn−1; xn−1Þ
yn ¼ Fðxn−1; yn−1Þ ; n ≥ 1

that converges to ðx*; x*Þ.
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(3) By the second conclusion of Theorem 3.1,

d*ðzn; ðx*; x*ÞÞ ≤ sðwnðd*ðz0; z1ÞÞÞ
and

d*ðzn; ðx*; x*ÞÞ ≤ sðd*ðzn; znþ1ÞÞ; n≥ 1:
Hence

maxfdðxn; x*Þ; dðyn; x*Þg ≤ sðwnðmaxfdðx0;Fðx0; y0ÞÞ; dðy0;Fðy0; x0ÞÞgÞÞ
maxfdðxn; x*Þ; dðyn; x*Þg ≤ sðmaxfdðxn; xnþ1Þ; dðyn; ynþ1gÞÞ; n≥ 1:

(4) Using (3) from Theorem 3.1, for any ðx; yÞ∈Y 3Y ,

d*ððx; yÞ; ðx*; x*ÞÞ ≤ sðd*ððx; yÞ;Tðx; yÞÞÞ:
Hence

maxfdðx; x*Þ; dðy; x*Þg ≤ sðmaxfdðx;Fðx; yÞÞ; dðy;Fðy; xÞÞgÞ: ,

Example 3.1. Let X ¼ ℝ; dðx; yÞ ¼ jx− yj; for any x; y∈ℝ, A ¼ ½0; 2�, B ¼ ½0; 1�, Y ¼
A∪B, F : Y 3Y →Y , Fðx; yÞ ¼ xþ3y

9 .
It is easy to verify that F is cyclic with respect to A and B.
For any x, v∈A and y, u∈B

dðFðx; yÞ;Fðu; vÞÞ ¼ jxþ 3y

9
� uþ 3v

9
j

¼ jx� u

9
þ y� v

3
j

≤ j1
9
ðx� uÞ þ 10

27
ðy� vÞj

¼ 1

3
jy� vþ 3u

9
þ yþ 3x

9
� vj

≤
1

3
ðjy� Fðv; uÞj þ jv� Fðy; xÞjÞ

≤
2

3
$
1

2
½dðy;Fðv; uÞÞ þ dðv;Fðy; xÞÞ�:

Then F is a cyclic coupled w-contraction of �Ciri�c type, where wðtÞ ¼ 2
3$t.

The hypotheses of Theorem 3.2 are satisfied, so by Theorem 3.2, F has a unique strong
coupled fixed point x* ∈A∩B. By calculation we get:

Fðx*; x*Þ ¼ x*5x* ¼ 0:

Our next theorem gives the well-posedness property for the coupled fixed point problem.
For the concept of well-posedness for the fixed point problems see [17].

Theorem 3.3. Let F : Y 3Y →Y be as in Theorem 3.2. Then the coupled fixed point
problem is well posed, that is, if there exists a sequence fðan; bnÞg n∈ℕ⊂Y 3Y such that�

dðan;Fðan; bnÞÞ→ 0
dðbn;Fðbn; anÞÞ→ 0

as n→∞;

then an → x* and bn → x*, as n→∞.
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Proof. Using the inequality

dðx; x*Þ ≤ sðmaxfdðx;Fðx; yÞÞ; dðy;Fðy; xÞÞgÞ
from Theorem 3.2 for x :¼ an and next for x :¼ bn, we have:�

dðan; x*Þ ≤ sðmaxfdðan;Fðan; bnÞÞ; dðbn;Fðbn; anÞÞgÞ
dðbn; x*Þ ≤ sðmaxfdðbn; Fðbn; anÞÞ; dðan;Fðan; bnÞÞgÞ ; n∈ℕ;

and letting n→∞we obtain �
dðan; x*Þ→ 0
dðbn; x*Þ→ 0

; n→∞:

For the data dependence problem we have the following result.

Theorem 3.4. Let F : Y 3Y →Y be as in Theorem 3.2. Let G: Y 3Y →Y be such that:

(i) G has at least one strong coupled fixed point x*G;

(ii) there exists η > 0 such that

dðFðx; xÞ;Gðx; xÞÞ≤ η; for any x∈Y :

Then dðx*F ; x*GÞ≤ sðηÞ , where x*F is the unique strong coupled fixed point of F and

sðtÞ ¼
X∞
k¼0

wkðtÞ; t ∈ℝþ:

Proof. By letting x :¼ x*G and y :¼ x*G in the inequality

dðx; x*Þ≤ sðmaxfdðx;Fðx; yÞÞ; dðy;Fðy; xÞÞgÞ;
we have

dðx*G; x*FÞ ≤ sðdðx*G;Fðx*G; x*GÞÞÞ ¼ sðdðGðx*G; x*GÞ;Fðx*G; x*GÞÞÞ;
and using the monotonicity of swe obtain

dðx*F ; x*GÞ≤ sðηÞ:

Theorem 3.5. Let F : Y 3Y →Y be as in Theorem 3.2 and Fn: Y 3Y →Y , n∈N , be
such that:

(i) for each n∈ℕ there exists a strong coupled fixed point x*n of Fn ;

(ii) fFngn∈ℕ converges uniformly to F.
Then x*n → x* as n→∞ , where x* is the unique strong coupled fixed point of F.

Proof. The sequence fFngn∈ℕ converges uniformly to F. Then there exist ηn ∈ℝþ, n∈ℕ
such that ηn → 0 as n→∞ and

dðFnðx; yÞ;Fðx; yÞÞ≤ ηn for any ðx; yÞ∈Y3Y :

Using Theorem 3.3 for G :¼ Fn, n∈N, we have

dðxn; x*Þ≤ sðηnÞ as n→∞:
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We will discuss Ulam–Hyers stability for the coupled fixed point problem corresponding
to a cyclic operator.

Definition 3.2. Let ðX ; dÞ be a metric space, Y ∈PðXÞ and F : Y 3Y →Y be an operator.
The coupled fixed point problem �

Fðx; yÞ ¼ x

Fðy; xÞ ¼ y
; x; y∈Y (3.8)

is called generalized Ulam–Hyers stable if there existsψ : ℝþ →ℝþ increasing, continuous at
0 and ψð0Þ ¼ 0 such that for any ε1 > 0; ε2 > 0 and for any solution ðx; yÞ∈Y 3Y of the
system �

dðx;Fðx; yÞÞ≤ ε1
dðy;Fðy; xÞÞ≤ ε2

there exists a solution ðx*; y*Þ of the coupled fixed point problem such that�
dðx; x*Þ≤ψðεÞ
dðy; y*Þ≤ψðεÞ ; where ε ¼ maxfε1; ε2g:

In particular, if x* ¼ y*, then we have generalized Ulam–Hyers stability for the strong
coupled fixed point problem Fðx; xÞ ¼ x; x∈Y .

Theorem 3.6. Suppose that all the hypotheses of Theorem 3.2 hold. Then the coupled fixed
point problem (3.8) is generalized Ulam–Hyers stable.

Proof. By Theorem 3.2 we have a unique x* ∈Y such that Fðx*; x*Þ ¼ x*.
Let ε1 > 0; ε2 > 0 and ð~x;~yÞ∈Y 3Y such that�

dð~x;Fð~x;~yÞÞ≤ ε1
dð~y;Fð~y;~xÞÞ≤ ε2:

We know that

dðx; x*Þ≤ sðmaxfdðx;Fðx; yÞÞ; dðy;Fðy; xÞÞgÞ; ∀ðx; yÞ∈Y 3Y :

Then for �
x :¼ ~x
y :¼ ~y

�

and next for �
x :¼ ~y
y :¼ ~x

�

using the monotonicity of s, we obtain that

maxfdð~x; x*Þ; dð~y; x*Þg≤ sðmaxfdð~x;Fð~x;~yÞÞ; dð~y;Fð~y;~xÞÞgÞ≤ sðmaxfε1; ε2gÞ:
As a conclusion, the coupled fixed point problem (3.8) is generalized Ulam–Hyers stable
with ψ ¼ s.

4. Coupled fixed points and coupled best proximity points of cyclic �Ciri�c type
multivalued operators
The purpose of this section is to consider the above problems in the multi-valued setting. We
present first a new concept of cyclic multi-valued operator.
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Definition 4.1. Let ðX ; dÞ be a metric space, A;B∈PðXÞ, Y ¼ A∪B and w : ℝþ →ℝþ a
strong comparison function. A multivalued operator F : Y 3Y →PðY Þ is called a cyclic
coupled w-contraction of �Ciri�c type multivalued operator if the following statements hold:

(i) F is cyclic with respect to A and B, that is

FðA3BÞ⊆B and FðB3AÞ⊆A;

(ii)

HðFðx; yÞ;Fðu; vÞÞ≤wð ~Mðx; v; y; uÞÞ; for any x; v∈A; y; u∈B (4.1)

where

~Mðx; v; y; uÞ ¼ max

�
dðx; uÞ; dðv; yÞ;Dðx;Fðx; yÞÞ;Dðu;Fðu; vÞÞ;Dðv;Fðv; uÞÞ;

Dðy;Fðy; xÞÞ; 1
2
½Dðx;Fðu; vÞÞ þ Dðu;Fðx; yÞÞ�; 1

2
½Dðy;Fðv; uÞÞ þ Dðv;Fðy; xÞÞ�

�
:

Definition 4.2. Let ðX ; dÞ be a metric space. Then Y ∈PðXÞ is called proximinal if for any
x∈X, there exists y∈Y such that

dðx; yÞ ¼ Dðx;Y Þ:
We denote Pprox ¼ fy∈PðXÞ jY is proximinalg.
Remark 4.1. Let ðX ; dÞ be a metric space. Then

PcpðXÞ⊂PproxðXÞ⊂PclðXÞ:

Remark 4.2. Every closed convex subset of a uniformly Banach space is proximinal,
see [18].

For details concerning the above notions see [1,19] and [20].
The following theorem (which is a particular case of Theorem 2.7 in [21]) will be used to

prove the first result in this section.

Theorem 4.1. ([21]). Let ðX ; dÞ be a complete metric space, A;B∈PclðXÞ and
T : A∪B→PproxðA∪BÞ a multivalued cyclic w -contraction of �Ciri�c type, that is:

(i) TðAÞ ⊆ B and TðBÞ⊆A;

(ii) there exists a strong comparison function w : ℝþ →ℝþ such that

HðTðxÞ;TðyÞÞ≤w

�
max

�
dðx; yÞ;Dðx;TðxÞÞ;Dðy;TðyÞÞ;

1

2
½Dðx;TðyÞÞ þ Dðy;TðxÞÞ�

��
;

for any x∈A and y∈B .
Then the following statements hold:

(1) there exists x* ∈A∩B such that x* ∈Tðx*Þ;
(2) for any x∈A and y∈TðxÞ , there exists a sequence ðxnÞn∈ℕ with x0 ¼ x , x1 ¼ y and

xn ∈Tðxn−1Þ, n≥ 1 , that converges to a fixed point x* ∈A∩B of T.

The following lemma presents a well-known result (see for example [22]).
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Lemma 4.1. Let ðX ; dÞ be a metric space, d* the metric defined on X 3X by (3,4) and D* the
gap functional, respectively H* the generalized Pompeiu–Hausdorff functional generated by d* .
Then for any a; b∈X and any A;B;C;D∈PproxðXÞ, the following statements hold:

(1) D*ðða; bÞ;C3DÞ ¼ maxðDða;CÞ;Dðb;DÞÞ;
(2) D*ðA3B;C3DÞ ¼ maxðDðA;CÞ;DðB;DÞÞ;
(3) H *ðA3B;C3DÞ ¼ maxfHðA;CÞ;HðB;DÞg;
(4) D*ðA3B;B3AÞ ¼ DðA;BÞ.

Proof. (1)þ(2) Since the sets C and D are proximinal then there exists c0 ∈C; d0 ∈D such that
Dða;CÞ ¼ dða; c0Þ and Dðb;DÞ ¼ dðb; d0Þ.

Then

D*ðða; bÞ;C3DÞ ¼ inffd*ðða; bÞ; ðc; dÞÞjc∈C; d∈Dg
¼ inffmaxfdða; cÞ; dðb; dÞgjc∈C; d∈Dg
¼ maxfdða; c0Þ; dðb; d0Þg:

Similarly, we can prove (2).
(3) H*ðA3B;C3DÞ ¼
max

�
supða;bÞ∈A3BfD*ðða; bÞ;C3DÞg; supðc;dÞ∈C3DfD*ððc; dÞ;A3BÞgg:

Using statement (1), we have

H *ðA3B;C3DÞ ¼ max
�
supða;bÞ∈A3BfDða;CÞ;Dðb;DÞg; supðc;dÞ∈C3DfDðc;AÞ;Dðd;BÞgg

¼ maxfHðA;CÞ;HðB;DÞg
(4) We use statement (2) for C ¼ A;D ¼ B.

Lemma 4.2. Let ðX ; dÞ be a metric space, d* the metric defined on X 3X by (3.4) . If a
multivalued operator F : X 3X →PðXÞ takes proximinal values with respect to d then the
multivalued operator T : X 3X →PðX 3XÞ, Tðx; yÞ ¼ ðFðx; yÞ;Fðy; xÞÞ takes proximinal
values with respect to d*.

Proof. For any pair ða; bÞ∈X 3X ;Fða; bÞ is a proximinal set, which means that for any
x∈X, there exists c∈Fða; bÞ such that

dðx; cÞ ¼ Dðx;Fða; bÞÞ:
In a similar way, for any y∈X, there exists d∈Fðb; aÞ such that

dðy; dÞ ¼ Dðy;Fðb; aÞÞ:
Then for any ðx; yÞ∈X 3X, there exists ðc; dÞ∈Tða; bÞ such that

d*ððx; yÞ; ðc; dÞÞ ¼ maxfdðx; cÞ; dðy; dÞg
¼ maxfDðx;Fða; bÞÞ;Dðy;Fðb; aÞÞg
¼ D*ððx; yÞ;Tða; bÞÞ:

The first result in this section is the following theorem.

Theorem 4.2. Let ðX ; dÞ be a complete metric space, A;B∈PclðXÞ, Y ¼ A∪B and
F : Y 3Y →PproxðY Þ a cyclic coupled w-contraction of �Ciri�c type multivalued operator.

Then the following statements hold:
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(1) there exist x*; y* ∈A∩B such that

x* ∈Fðx*; y*Þ; y* ∈Fðy*; x*Þ;
(that is the pair ðx*; y*Þ is a coupled fixed point of F );

(2) for each ða; bÞ∈A3Bthere exists a sequence ðan; bnÞn∈ℕ* ∈Y 3Y with a0 ¼ a, b0 ¼ b
and

an ∈Fðbn−1; an−1Þ; bn ∈Fðan−1; bn−1Þ for n ≥ 1

that converges to a coupled fixed point ðx*; y*Þ∈A∩B of F .

Proof. It is easy to observe that

~Mðx; v; y; uÞ ¼ ~Mðv; x; u; yÞ; for any x; v∈A; y; u∈B:

If we change the roles between x and v and similarly for y and u, then the inequality (4.1)
becomes

HðFðv; uÞ;Fðy; xÞÞ≤wð ~Mðx; v; y; uÞÞ: (4.2)

From (4.1) and (4.2) we obtain

maxfHðFðx; yÞ;Fðu; vÞÞ;HðFðy; xÞ;Fðv; uÞÞg≤wð ~Mðx; v; y; uÞÞ:

Let T : Y 3Y →PðY 3Y Þ, Tðx; yÞ ¼ ðFðx; yÞ;Fðy; xÞÞ.
We consider onY 3Y themetric d* defined by (3.4), using the same functionalsD* andH *

as in Lemma 4.1.
For z ¼ ðx; yÞ∈A3B, w ¼ ðu; vÞ∈B3A, using Lemma 4.1,

H *ðTðzÞ;TðwÞÞ ¼ H *ððFðx; yÞ;Fðy; xÞÞ; ðFðu; vÞ;Fðv; uÞÞÞ
¼ maxfHðFðx; yÞ;Fðu; vÞÞ;HðFðy; xÞ;Fðv; uÞÞg
≤wð ~Mðx; v; y; uÞÞ:

(4.3)

By Lemma 4.1,

D*ðz;TðzÞÞ ¼ maxfDðx;Fðx; yÞÞ;Dðy;Fðy; xÞÞg;
D*ðw;TðwÞÞ ¼ maxfDðu;Fðu; vÞÞ;Dðv;Fðv; uÞÞg;

1

2
½D*ðw;TðzÞÞ þ D*ðz;TðwÞÞ� ¼ 1

2
½maxfDðu;Fðx; yÞÞ;Dðv; Fðy; xÞÞg

þmaxfDðx;Fðu; vÞÞ;Dðy;Fðv; uÞÞg�

≥max

�
1

2
½Dðu;Fðx; yÞÞ þ Dðx;Fðu; vÞÞ�;

1

2
½Dðv;Fðy; xÞÞ þ Dðy;Fðv; uÞÞ�

�
:

Using the monotonicity of w, (4.3) becomes
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H *ðTðzÞ;TðwÞÞ≤wðmax

�
d*ðz;wÞ;D*ðz;TðzÞÞ;D*ðw;TðwÞÞ;
1

2
½D*ðw;TðzÞÞ þ D*ðz;TðwÞÞ�

��
; for any z∈A3B;

w∈B3A;

and because T satisfies the cyclic condition

TðA3BÞ ¼ ðFðA3BÞ;FðB3AÞÞ⊆B3A;TðB3AÞ⊆A3B;

where A3B;B3A∈PclðY 3Y Þ, we conclude that T is a multivalued cyclic w-contraction
of �Ciri�c type.

By Lemma 4.2, the property of the operator F to have proximinal values is transferred to
the operator T, so we are in the conditions of Theorem 4.1.

Then there exists ðx*; y*Þ∈ ðA3BÞ∩ðB3AÞ such that ðx*; y*Þ∈ ðFðx*; y*Þ;Fðy*; x*ÞÞ
and for each ða; bÞ∈A3B there exists a sequence ðan; bnÞn∈ℕ∈Y 3Y with a0 ¼ a, b0 ¼ b
and

ðan; bnÞ∈ ðFðbn−1; an−1Þ;Fðan−1; bn−1ÞÞ; n≥ 1

that converges to ðx; yÞ.
Hereinafter we define and study the generalized Ulam–Hyers stability of the following

coupled fixed point problem.

Definition 4.3. Let ðX ; dÞbe ametric space,Y ∈PðXÞ,F : Y 3Y →PðY Þbe amultivalued
operator. By definition, the coupled fixed point problem�

x∈Fðx; yÞ
y∈Fðy; xÞ ; x; y∈Y (4.4)

is said to be generalized Ulam–Hyers stable if there exists an increasing function
ψ : ℝþ →ℝþ, continuous at 0, with ψð0Þ ¼ 0 such that for each ε > 0 and for each
solution ðx; yÞ∈Y 3Y of the inequality

maxfDðx;Fðx; yÞÞ;Dðy;Fðy; xÞÞg≤ ε;

there exists a solution ðx*; y*Þ∈Y3Y of the coupled fixed point problem such that

maxfdðx; x*Þ; dðy; y*Þg≤ψðεÞ:
Our stability result is a consequence of the following theorem.

Theorem 4.3 ([21]). Let T : Y →PproxðY Þ be as in Theorem 4.2, ε > 0 and x∈Y be such
that Dðx;TðxÞÞ≤ ε . Then there exists x* a fixed point of T such that dðx; xÞ≤ sðεÞ, where s is
given by Lemma 2.2.

Theorem4.4. If all the hypotheses of Theorem 4.2 hold, then the coupled fixed point problem
(4.4) is generalized Ulam–Hyers stable.

Proof. Let any ε > 0 and let ðx; yÞ∈Y 3Y such that�
Dðx;Fðx; yÞÞ≤ ε
Dðy;Fðy; xÞÞ≤ ε:

As before, we consider T : Y 3Y →PðY 3Y Þ,
Tðx; yÞ ¼ ðFðx; yÞ;Fðy; xÞÞ:
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For z ¼ ðx; yÞ,
D*ðz;TðzÞÞ ¼ maxfDðx;Fðx; yÞÞ;Dðy;Fðy; xÞÞg≤ ε:

Applying Theorem 4.3, there exists a fixed point z* ¼ ðx*; y*Þ of T such that d*ðz; z*Þ≤ sðεÞ,
that is there exists a solution ðx*; y*Þ of the coupled fixed point problem (4.4) such that

maxfdðx; x*Þ; dðy; y*Þg≤ sðεÞ: ,

In the last part of this section we will consider the following best proximity problem for a
cyclic coupled multivalued operator:

If ðX ; dÞ is a metric space, A;B∈PðXÞ, Y ¼ A∪B, F : Y 3Y →PðY Þ is a coupled
multivalued operator satisfying the cyclic condition FðA3BÞ⊆B, FðB3AÞ⊆A, then we
are interested in finding ðx*; y*Þ∈A3B such that

Dðx*;Fðx*; y*ÞÞ ¼ Dðy*;Fðy*; x*ÞÞ ¼ DðA;BÞ: (4.5)

ðx*; y*Þ is said to be a coupled best proximity point of F.
Notice that, in particular, if A∩B≠ 0= then ðx*; y*Þ is a coupled fixed point of F.

Definition 4.4. Let ðX ; dÞ be a metric space, A;B∈PðXÞ, Y ¼ A∪B. A multivalued
operator F : Y 3Y →PðY Þ is called a cyclic coupled �Ciri�c type multivalued operator if:

(i) FðA3BÞ⊆B and FðB3AÞ⊆A;

(ii) there exists a comparison function w : ℝþ →ℝþ such that

HðFðx; yÞ;Fðu; vÞÞ≤wð ~Mðx; v; y; uÞ � DðA;BÞÞ þ DðA;BÞ;

for any x; v∈A, y; u∈B.
In 2009, Suzuki, Kikkawa and Vetro introduced the following property.

Definition 4.5. [23] LetAandBbe nonempty subsets of a metric space ðX ; dÞ. Then ðA;BÞ
is said to satisfy the property UC if for ðxnÞn∈ℕ and ðznÞn∈ℕ sequences in A and ðynÞn∈ℕ a
sequence in B such that dðxn; ynÞ→DðA;BÞ and dðzn; ynÞ→DðA;BÞ as n→∞, then
dðxn; znÞ→ 0 as n→∞.

Example 4.1. [24] [23] (1) Any pair of nonempty subsets ðA;BÞ of a metric space ðX ; dÞ
with DðA;BÞ ¼ 0 satisfies the property UC;

(2) Any pair of nonempty subsets ðA;BÞ of a uniformly convex Banach space with A
convex satisfies the property UC.

Lemma 4.3. Let Aand B be nonempty subsets of a metric space ðX ; dÞ , and d* be the metric
defined on X 3X by (3.4). If ðA;BÞ and ðB;AÞ satisfy the property UC with respect to d then
ðA3B;B3AÞ satisfy the property UC with respect to d.

Proof. We denote D*ðA3B;B3AÞ ¼ DðA;BÞ ¼ D. Let xn ¼ ðan; bnÞ; zn ¼ ða0
n; b

0
nÞ∈

A3B; yn ¼ ðβn; αnÞ∈B3A such that d*ðxn; ynÞ→D and d*ðzn; ynÞ→D as n→∞.
Then

maxfdðan; βnÞ; dðbn; αnÞg→D and

max
�
dða0

n; βnÞ; dðb
0
n; αnÞ

�
→D as n→∞:

It is obvious that dðan; βnÞ→D; dða0
n; βnÞ→D and because ðA;BÞ satisfies the property

UC we get dðan; a0
nÞ→ 0.
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From dðbn; αnÞ→D; dðb0
n; αnÞ→D as n→∞ and using ðB;AÞ satisfies the property UC

we get dðbn; b0
nÞ→ 0.

Finally,

d*ðxn; znÞ ¼ max
�
dðan; a0

nÞ; dðbn; b
0
nÞ
�
→ 0 as n→∞:

We recall the following result.

Theorem 4.5 ([25]). Let ðX ; dÞ be a complete metric space, A∈PclðXÞ;B∈PðXÞ such that
ðA;BÞ satisfies the property UC. Let T : A∪B→PproxðXÞ be a multivalued �Ciri�c type cyclic
operator that is:

(i) TðAÞ⊆B and TðBÞ⊆A;

(ii) there exists a comparison function w : ℝþ →ℝþ such that

HðTðxÞ;TðyÞÞ≤wðMðx; yÞ � DðA;BÞÞ þ DðA;BÞ; where

Mðx; yÞ ¼ max

�
dðx; yÞ;Dðx;TðxÞÞ;Dðy;TðyÞÞ; 1

2
½Dðx;TðyÞÞ þ Dðy;TðxÞÞ�

�
:

Then the following statements hold:

(1) T has a best proximity point x*A ∈A ;

(2) there exists a sequence ðxnÞn∈ℕwith x0 ∈A, and xnþ1 ∈TðxnÞ , n≥ 0 , such that ðx2nÞn∈ℕ
converges to x*A.

The next result is a consequence of the above theorem.

Theorem 4.6. Let ðX ; dÞ be a complete metric space, A;B∈PclðXÞ such that ðA;BÞ and
ðB;AÞ satisfy the property UC, and Y ¼ A∪B . If F : Y 3Y →PproxðY Þ is a cyclic coupled
�Ciri�c type multivalued operator, then the following statements hold:

(i) F has a coupled best proximity point ðx*; y*Þ∈A3B ;

(ii) there exist two sequences ðxnÞn∈ℕ , ðynÞn∈ℕ with

ðx0; y0Þ∈A3B; xnþ1 ∈Fðxn; ynÞ; ynþ1 ∈Fðyn; xnÞ;
such that ððx2n; y2nÞÞn∈ℕ converges to ðx*; y*Þ .

Proof. Considering again on Y 3Y the metric d* defined by (3.4), in a similar manner as in
Theorem 4.2, we obtain that the operator T : Y 3Y →PðY 3Y Þ,

Tðx; yÞ ¼ ðFðx; yÞ;Fðy; xÞÞ:
is a multivalued �Ciri�c type cyclic operator which takes proximinal values.

Using Lemma 4.1, the pair ðA3B;B3AÞ satisfies the property UC with respect to d*.
Consequently, we are in the conditions of Theorem 4.5, so T has a best proximity point

ðx*; y*Þ∈A3B and there exists a sequence ðxn; ynÞn∈ℕ with ðx0; y0Þ∈A3B and
ðxnþ1; ynþ1Þ∈Tðxn; ynÞ such that ðx2n; y2nÞn∈ℕ converges to ðx*; y*Þwith respect to d*.

5. An application to a system of integral equations
We apply the results given by Theorem 3.2 to study the existence and the uniqueness of
solutions of the following system of integral equations:
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8>><
>>:

xðtÞ ¼
Z b

a

Gðt; sÞf ðs; xðsÞ; yðsÞÞds

yðtÞ ¼
Z b

a

Gðt; sÞf ðs; yðsÞ; xðsÞÞds
; t ∈ ½a; b� (5.1)

where a; b∈ℝ, a < b, G∈Cð½a; b�3½a; b�; ½0;∞ÞÞ;
f ∈Cð½a; b�3ℝ3ℝ;ℝÞ:

Theorem 5.1. We suppose that:

(i) there exist α; β∈Cð½a; b�;ℝÞ , with αðtÞ≤ βðtÞ , for any t ∈ ½a; b� , such that8>><
>>:

αðtÞ≤
Z b

a

Gðt; sÞf ðs; βðsÞ; αðsÞÞds

βðtÞ≥
Z b

a

Gðt; sÞf ðs; αðsÞ; βðsÞÞds
for any t ∈ ½a; b�; (5.2)

(ii) there exists a strong comparison function w : ℝþ →ℝþ such that

jf ðs; u1; u2Þ � f ðs; v1; v2Þj≤wðmaxfju1 � v1j; ju2 � v2jgÞ;
for any s∈ ½a; b� and u1; u2; v1; v2 ∈ℝ;

(iii) supt∈½a;b�
R b

a
Gðt; sÞds≤ 1 ;

(iv) f ðs; $; yÞ is monotone decreasing for any s∈ ½a; b� and any y∈ℝ;

(v) f ðs; x; $Þ is monotone increasing for any s∈ ½a; b� and any x∈ℝ .
Then the system (5.1) has a unique solution ðx*; x*Þ∈Cð½a; b�;ℝ2Þ , with α≤ x* ≤ β .

Proof. Let us consider

X :¼ Cð½a; b�;ℝÞ; and the Chebyshev norm jxj
∞
¼ maxt∈½a;b�jxðtÞj:

Then ðX ; j$j
∞
Þ is a Banach space. We consider the following closed subsets of X:

A ¼ fx∈X j x≤ βg;B ¼ fx∈X jx≥ αg;

Y ¼ A∪B and the operator F : Y 3Y →Y ,

Fðx; yÞðtÞ :¼
Z b

a

Gðt; sÞf ðs; xðsÞ; yðsÞÞds:

The system (5.1) is equivalent to �
Fðx; yÞ ¼ x

Fðy; xÞ ¼ y
; x; y∈Y :

We will prove that F is cyclic with respect to A and B, that is

FðA3BÞ⊆B and FðB3AÞ⊆A:

Let x∈A and y∈B0xðsÞ≤ βðsÞ; yðsÞ≥ αðsÞ; ∀s∈ ½a; b�.
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Using the monotonicity of f we have

Gðt; sÞf ðs; xðsÞ; yðsÞÞ≥Gðt; sÞf ðs; βðsÞ; αðsÞÞ;
and from (i), by integration, Z b

a

Gðt; sÞf ðs; xðsÞ; yðsÞÞds≥ αðtÞ;

which means that
Fðx; yÞðtÞ≥ αðtÞ; ∀t ∈ ½a; b�0Fðx; yÞ∈B:

So FðA3BÞ⊆B. In a similar way we have FðB3AÞ⊆A.
Using the conditions (ii) and (iii), and the monotonicity of w, for any x; v∈A and y; u∈B,

we have

j f ðs; xðsÞ; yðsÞÞ � f ðs; uðsÞ; vðsÞÞj≤wðmax
s∈½a;b�

fjxðsÞ � uðsÞj; jyðsÞ � vðsÞjgÞ

≤wðmaxfjx� uj
∞
; jy� vj

∞
gÞ0

jFðx; yÞðtÞ � Fðu; vÞðtÞj≤
Z b

a

Gðt; sÞjf ðs; xðsÞ; yðsÞÞ � f ðs; uðsÞ; vðsÞÞjds

≤wðmaxfjx� uj
∞
; jy� vj

∞gÞ
Z b

a

Gðt; sÞds
≤wðmaxfjx� uj

∞
; jy� vj

∞
gÞ; ∀t ∈ ½a; b�:

We have

jFðx; yÞ � Fðu; vÞj
∞
≤wðmaxfjx� uj

∞
; jy� vj

∞
gÞ for any x; v∈A and y; u∈B;

so the operator F is a cyclic coupled w-contraction of �Ciri�c type.
All the conditions of Theorem 3.2 are satisfied, so T has a unique strong coupled fixed

point ðx*; x*Þ∈A∩B; with αðtÞ≤ x*ðtÞ≤ βðtÞ; for any t ∈ ½a; b�.
Definition 5.1. The system (5.1) is said to be generalized Ulam–Hyers stable if there exists
ψ : ℝþ →ℝþ increasing, continuous at 0 and ψð0Þ ¼ 0 such that for any ε1 > 0; ε2 > 0 and
for any solution ðx; yÞ∈Cð½a; b�;ℝ2Þ, of the system8>><

>>:
jxðtÞ �

Z b

a

Gðt; sÞf ðs; xðsÞ; yðsÞÞdsj≤ ε1

jyðtÞ �
Z b

a

Gðt; sÞf ðs; yðsÞ; xðsÞÞdsj≤ ε2

there exists a solution ðx*; y*Þ∈Cð½a; b�;ℝ2Þ of the system (5.1) such that for any t ∈ ½a; b�,� jxðtÞ � x*ðtÞj≤ψðεÞ
jyðtÞ � y*ðtÞj≤ψðεÞ ; where ε ¼ maxðε1; ε2Þ:

Theorem 5.2. Suppose that the hypotheses of Theorem 5.1 hold. Then the system (5.1) is
generalized Ulam–Hyers stable.

Proof. By Theorem 5.1, the system (5.1) has a unique solution ðx*; x*Þ∈Cð½a; b�;ℝ2Þ, with
α≤ x* ≤ β. Applying Theorem 3.6 to the operator F : Y 3Y →Y ,
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Fðx; yÞðtÞ :¼
Z b

a

Gðt; sÞf ðs; xðsÞ; yðsÞÞds;

in the same setting as in the proof of Theorem 5.1, we get the conclusion.
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condition, Stud. Univ. Babeş -Bolyai Math. 62 (3) (2017) 395–405.

Corresponding author
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