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Abstract

The purpose of this paper is to study the coupled fixed point problem and the coupled best proximity
problem for single-valued and multi-valued contraction type operators defined on cyclic representations of
the space. The approach is based on fixed point results for appropriate operators generated by the initial
problems.
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1. Introduction

One of the most important metrical fixed point theorem, Banach contraction principle, has
been generalized in several directions, see for example [1]. The concept of coupled fixed point
was introduced by Guo and Lakshmikantham (see [2]). A new research direction for the
theory of coupled fixed points was developed by many authors (see [3-9]) using contractive
type conditions.

Definition 1.1 (/10)). Let X be a nonempty set. A pair (x,y) € X X X is called coupled fixed
point of the operator F': X X X — X if F(x,y) = xand F(y,x) = . If F(x,x) = x then x is
called a strong coupled fixed point of F' (or, in several papers, a fixed point of F).

Another generalization of the Banach principle was given by Kirk, Srinivasan and
Veeramani using the concept of cyclic operators.
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Definition 1.2 (/11]). Let A and B be nonempty subsets of a given set X. An operator
T:AuB—AuBis called cyclic if T(A) CBand T(B) CA.
More recently, Choudbury and Maity formulated the following definition.

Definition 1.3 (/12]). Let A and B be nonempty subsets of a given set X. An operator
F: XXX - X having the property that for any x € A and y € B, F(x,y) € B and
F(y,x) € A, is called a cyclic operator with respect to A and B.

Definition 1.4 (/13)). Let A and B be nonempty subsets of a metric space (X, d)
An operator F: X X X — X is called a cyclic Ciri¢ operator with respect to A and Bif F is
cyclic with respect to A and B and for some constant g € (0,1), F satisfies the following
condition:

d(F(x,),F(u,v)) < q-M(x,0,9,u),
where x,0 € A, y,u € B, and

M(x,v,y,u) = max{d(x, u),%d(u,F(x,y)), 1d(x,F(u,v)),

2

%[d(x,F(x,y)) +d(u,F(u, v))}}

Theorem 1.1 (/13)). Let A and B be nonempty closed subsets of a complete metric space
(X,d), F: X XX - X a cyclic Cirié type operator with respect to A and B, with AnB#(.
Then F has a strong coupled fixed point in AnB.

The first aim of this paper is to generalize the above theorem, weakening the contractive
condition and excluding the condition A NB#@. We prove the uniqueness of the strong
coupled fixed point and we provide an iterative method for approximating the strong coupled
fixed point.

We also present coupled fixed point and coupled best proximity point results for cyclic
coupled Cirié¢-type multivalued operators.

On the other hand, some qualitative properties of the coupled fixed point set, such as data
dependence, generalized Ulam-Hyers stability and well-posedness are studied.

Our approach is based on the following idea: we transform the coupled fixed point/ best
proximity point problem into a fixed point/ best proximity point problem for an appropriate
operator defined on a cartesian product of the spaces. In this way, many coupled fixed point/
best proximity point results can be obtained using classical fixed point/ best proximity point
theorems.

2. Preliminaries
The standard notations and terminologies in nonlinear analysis will be used throughout
this paper.

Let (X, d) be a metric space. We denote:

P(X):={Y CX|Y is nonempty }; P,(X) := {Y €P(X) | Y is bounded};
Py(X) :={yeP(X)|Y is closed}; Py(X) := {Y € P(X) | Y is compact}.
Let us define the following (generalized) functionals used in this paper:
e The gap functional
D:P(X)XP(X)—>R, DA,B) =inf{d(a,b)|acA,beB};



e The generalized excess functional
p:PX)XP(X)->R;U{+oo},p(4,B) =sup{D(a,B) |acA};
e The generalized Pompeiu—Hausdorff functional
H:PX)XPX)->R,U{+oo} H(A,B) =max{p(4A,B),p(B,A)}.

There are several conditions upon the comparison function that have been considered in
literature. In this paper we shall refer only to:
Definition 2.1 (/14]). A function ¢: R, — R, is called a comparison function if it satisfies:

(i) ¢is increasing;

(i) (¢"(t)),ey converges to 0 as 7 — oo, for all £ € R,
If the condition (ii) is replaced by the condition:

(i) S0 ¢*(¢) < oo, for any ¢ > 0, then @ is called a strong comparison function.

Lemma 2.1 (/1)). If ¢: Ry — R is a comparison function, then ¢(t) < t, for anyt >0,
©(0) = 0 and ¢ is continuous at 0.

Lemma 2.2 ([14)). If ¢: R, — R is a strong comparison function, then the following hold:
(1) @ is a comparison function;
(i) the function s: R, — R, defined by

st) = &),

k=0

is mncreasing and continuous at 0.

Example 2.1 ((15)). 1) ¢: R, - R, ¢(f) = at, where a € [0, 1), is a strong comparison
function;
@ ¢:Ry—>Ry, o(t)=13t for t€[0,1] and ¢(t) =¢—1% for £>1, is a strong
comparison function;
B ¢: Ry >Ry, ¢(t) = at +1[t], where a € (0,}), is a strong comparison function;
@ ¢o: R, >Ry, o(t) = 1%:}’ is a comparison function, but is not a strong comparison
function.

For more examples and considerations on comparison functions see [1] and the
references therein.

3. Coupled fixed points of cyclic Ciri¢ type single valued operators
In this section we present some coupled fixed point results for cyclic Ciri¢ type operators on
complete metric spaces.

We introduce now the following new concept.

Definition 3.1 Let (X, d) be a metric space, A,B€P;(X), Y =AuBand ¢: R, >R, a
strong comparison function. An operator F:Y XY — Y is called a cyclic coupled
¢-contraction of Ciri¢ type if the following statements hold:

(i) F is cyclic with respect to A and B;
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for any x,v € A and y, u € B, where

M(x,v,y,u) = max{d(x, u),d,y),d(x, F(x,9)),du,F(u,0)),dv,F(v,u)),

)
182 6702 3, Fiw,0)) + d(u, Fix, ),

L dly. Flo.) + de, me}.

The following theorem (which is a particular case of Theorem 3.2 in [16]) will be used to
prove our results presented in this section.

Theorem 3.1 (/16)). Let (X, d) be a complete metric space, A,BE Py(X), ¢: Ry >R bea
strong comparison function and f: AUB — AUB be an operator such that f(A) CB and
f(B)CA.Iffis a cyclic ¢ -contraction of Ciri¢ type, that is

)50 < o (macf ). de ), S0,
35S0 + A0S} ).

for any x € A and yE B, then the followmg statements hold:
(1) f has a unique fzxed ﬁomt x" €ANB and the Picard iteration {x, buso defined by
%n = f(x,1), n>1, converges to x" for any starting point xg € AU B;
@) the followmg estimates hold.:
d(x,2) < s(¢"(dx,x1))), n21;
d(xnax*) < s(d(%n, Xn11)), n>1;
B) foranyx€AUB, d(x,x") <s(d(x,f(x))), where sis given by Lemma 2.2.
The main result of this section is the following theorem.

Theorem 3.2. Let (X,d) be a complete metric space, A,B€P;(X), Y =AUB and
F:YXY - Y acyclic coupled ¢ -contraction of Ciri¢ type. Then:
(1) F has a unique strong coupled fixed point x* € AN B;
@) for any (x0,%0) €A X B, there exists a sequence {(%n,¥n) } et CX X X defined by
{ X = F(¥n-1,2%0-1) 1

n2 1
n = F(-xn—lvyn—l)
that converges to (x,x);

(3) the following estimates hold:

max{d(x,,x"),d(y,, x")} < s(¢”"(max{d(xo, F(x0,%)),d¥0, F (0, %))})), n>1,
max{d(x,,,x*),d(yn,x*)} < s(max{d (%, Xp+1) AWns Ynr1)}), n>1;

@) foramyx,y€Y, d(x,x") < s(max{d(x,F(x,y)),d(y,F(y,x))}), where s is given by
Lemma 2.2.

Proof. (1)—(2) Changing the roles between x and v and similarly for y and #, the inequality
(3.1) becomes:



d(F(v,u),F(y,x)) <M (v,x,u,y)), for x,v€eA and y,u €B. 3.2

Obviously, M (x,v,y,u) = M (v, x,u,y). From the inequalities (3.1) and (3.2) we obtain
max{d(F(x,y),F(u,v)),d(F(y,x), F(v,u))} < (M (x,0,,u)). 33

Forz = (x,y) €A X B w = (u,v) € B X A, denote
d" (z,w) = max{d(x,u),d(y,v)}. (3.4)

Then (X X X,d") is a complete metric space.
Let T: Y XY - Y X Y be defined by T'(x,y) = (F(x,5),F(y,x)). We have:

310" (W) + 0, T(0)] = gmax{d(s,Plw)). d0. F.1)
+%max{d(u,F(x,y))’d(UvF(yvx))}

Zmax{% [d(x, F(u,v)) + d(u, F(x,))],

%[d(y,F(v, u)) +d(v, F(y,x))] }

Using the above relation, from (3.3) we get

d(T(z), T(w)) < ¢ (max{d* (z,w),d (z,T(z2)),d (w, T(w)),

1 (35)
10 e T+ d . TE) )
foranyze A X BweB X A.
Because F(A X B) CBand F(B X A)C A, we have
T(AXB)CBXA and T(BXA)CAXB. (3.6)

(35) and (3.6) means that the operator 7 is a cyclic ¢-contraction of Ciri¢ type. Applying
Theorem 3.1, there exists a uniquez* = (x*,3") € (A X B)n(B X A)such that T(z") = z"and
the Picard iteration z, = T'(2,_1) converges to z* for any starting point z, € Y. So

Fy) =«
{F(y*,x*) —y 3.7

where x*,y" €ANnB.

From unicity of the pair (x*,y") and the symmetry with respect to x* and y* of the
system (3.7) we conclude x* = y".

Then F has a unique strong coupled fixed point x* € AN B and for any starting point
(x0,%0) €A X B there exists a sequence {(X,,¥u)},e €Y X Y with

Xn = F(yn—bxn—l)
am>1
{yn = F(xn—lvyn—l)

that converges to (x*, x").
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(3) By the second conclusion of Theorem 3.1,
d (va (x*v X*)) < s(qpﬂ(d* (ZOv Zl)))

and
d* (Zn, (x*,x*)) < s(d* (2127Ziz+1))7 nx1.
Hence
max{d(x,,x"),d(y,, x")} < s(¢"(max{d(xo, F(x0,%)),d¥0, F(¥0,%))}))
max{d(x,,x"),d¥,, x")} < s(max{d(x,, %u11),dVp,Vui1})),n>1.
(4) Using (3) from Theorem 3.1, for any (x,y) €Y X Y,
d" (%), (*",x")) < s(d ((x,9), T(x.)))-

Hence
max{d(x,x"),d(y,x")} < s(max{d(x,F(x,y)),d(»,F(y,x))}). O

Example 3.1. Let X =R, d(x, yg |x—y|, for anyx,yeR, A =10,2], B=1[0,1], ¥ =
AUBF:Y XYY, F(x, y) 2

It is easy to verify that F is cyclic with respect to A and B.

For anyx, veAandy, ueB

AP (), Flw) = 52 1

10
<lg (=) + 5 0~ v)|
1 v+3u y+3x

=3y tTg
<3 (i~ F(o,)| + 1o —F0,2))
21

<5 5d0, Fv,u) +d@,F(y,2))].

Then F'is a cyclic coupled ¢-contraction of Ciri¢ type, where ¢(¢) = % L.
The hypotheses of Theorem 3.2 are satisfied, so by Theorem 3.2, F' has a unique strong
coupled fixed point x* € A N B. By calculation we get:

F(x',x)=x"ex =0.
Our next theorem gives the well-posedness property for the coupled fixed point problem.
For the concept of well-posedness for the fixed point problems see [17].

Theorem 3.3. Let F: Y XY - Y be as in Theorem 3.2. Then the coupled fixed point
problem is well posed, that is, if there exists a sequence {(a,,b,)} nen CY X Y such that

d(a,,F(a,,b,))—0
d(by, F(by,a,)) =0

as n— oo,

then a, — x* and b, — x*, as n — .



Proof. Using the inequality
d(x,x") < s(max{d(x,F(x,y)),d(y,F(v,x))})

from Theorem 3.2 for x := @, and next for x := b,, we have:

{d(an,x*) < s(max{d(a,, F(a, b)), d(by, F (by; a,)) })

d(by,x") < s(max{d(b,, F(b,, @), d(@y, F(ayb,))}) " €t

and letting 7 — co we obtain

d(@,,x)=0
by 1) =0

For the data dependence problem we have the following result.
Theorem 3.4. Let F: Y XY — Y be as in Theorem 3.2. Let G:' Y XY — Y be such that:
(1) G has at least one strong coupled fixed point xz,
(i1) there exists n > 0 such that
d(F(x,x),G(x,x)) <y, for any x€Y.

Then d(xp, x;;) < s(n7) , where x} 1s the unique strong coupled fixed point of F and

ZQD JER,.

Proof. By letting x := x, and y := x, in the inequality
d(x,27) < s(max{d(x, F(x,9)),d(v, F(y,x))}),

we have
d(xg, %) <s(d(xg, F(ag, 25))) = s(d(Gxg, x5), F(x, %5))),
and using the monotonicity of s we obtain
d(xp, %) < s(1).

Theorem 3.5. Let F: Y XY - Y be as in Theorem 32 and F,. Y XY ->Y , neN, be
such that:

(i) for each n € N there exists a strong coupled fixed point x,, of F), ;

(1) {Fy },,; converges uniformly to F.

Then x,,— x" as n— oo, where x" is the unique strong coupled fixed point of F.

Proof. The sequence {F,}, ., converges uniformly to /. Then there exist 7, e R}, neN
such that 5, > 0 as 7 — oo and

d(F(%,),F(%,)) < n, for any (x,y) € YXY.

Using Theorem 3.3 for G := F,, n € N, we have

d(x,,x") < s(n,) as n— .
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We will discuss Ulam—Hyers stability for the coupled fixed point problem corresponding
to a cyclic operator.

Definition 3.2. Let (X, d) be a metric space, Y € P(X) and F': Y X Y — Y be an operator.
The coupled fixed point problem

F(x,y) =x
{F(y’x):y,x,er 3.9

is called generalized Ulam—Hyers stable if there exists y : R, — R, increasing, continuous at
0 and y(0) = 0 such that for any & > 0,&, > 0 and for any solution (x,y) € Y X Y of the
system

{d(x,F(x,y)) <e
dw,F(y,x)) <&

there exists a solution (x*,y") of the coupled fixed point problem such that

{1 5ete) e - )

In particular, if x* =", then we have generalized Ulam-Hyers stability for the strong
coupled fixed point problem F(x,x) = x,x€ Y.

Theorem 3.6. Suppose that all the hypotheses of Theorem 3.2 hold. Then the coupled fixed
point problem (3.8) is generalized Ulam—Hyers stable.

Proof. By Theorem 3.2 we have a unique x* € Y such that F(x*, x") = x".
Let e; > 0,62 > Oand (%,7) € Y X Y such that

dx, F(x,9) <&
{ d@,F@,.@) <é.

We know that
d(x,x") < s(max{d(x,F(x,9)),d(v,F(y,%))}),V(x,y) €Y X Y.

)
GZ3)

using the monotonicity of s, we obtain that
max{d(x,x"),d®,x")} < s(max{d(x,F(%,5)),d(,F(3,%))}) <s(max{e;, &} ).

Then for

VRS
= R
i
<o

and next for

As a conclusion, the coupled fixed point problem (3.8) is generalized Ulam-Hyers stable
withy =s.

4. Coupled fixed points and coupled best proximity points of cyclic Ciri¢ type
multivalued operators

The purpose of this section is to consider the above problems in the multi-valued setting. We
present first a new concept of cyclic multi-valued operator.



Definition 4.1. Let (X, d) be a metric space, A, BEP(X),Y =AuBand ¢: R, >R, a
strong comparison function. A multivalued operator F': ¥ X Y — P(Y) is called a cyclic
coupled ¢-contraction of Ciri¢ type multivalued operator if the following statements hold:

(i) F'is cyclic with respect to A and B, that is
F(AXB)CB and F(BXA)CA;
(i)

H(F(x,9),F(u,v)) <o(M(x,v,y,u)), for any x,v€A,y,u€B 41)

where

M(x,v,y,u) = max{d(x, u),d(v,y),D(x,F(x,9)),D(u, F(u,v)),D(v,F(v,u)),
D(y,F(y,x)),3[D(x,F(u,v)) + D(u,F(x,9))],5[DWy, F (v, u)) +D(0,F@,X))]}-

Definition 4.2. Let (X, d) be a metric space. Then Y € P(X) is called proximinal if for any
x € X, there exists y € Y such that

d(x,y) = D(x,Y).
We denote P,y = {y€P(X)|Y is proximinal}.

Remark 4.1. Let (X, d) be a metric space. Then
Pcp(X) CPpmx(X) CPcl(X)-

Remark 4.2. Every closed convex subset of a uniformly Banach space is proximinal,
see [18].

For details concerning the above notions see [1,19] and [20].

The following theorem (which is a particular case of Theorem 2.7 in [21]) will be used to
prove the first result in this section.

Theorem 4.1. ([21]). Let (X,d) be a complete metric space, A,BePy(X) and
T: AUB - Py (AUB) a multivalued cyclic ¢ -contraction of Ciric type, that is:

() T(A) C Band T(B) C4;

(i1) there exists a strong comparison function ¢: R, — R, such that

H(T().T() < <p<max{d<x,y>,0<x7 (), Dy, T(),
3D T0) + D0, TN )

foranyxeAandyeB.
Then the following statements hold:

() there exists x* € AnBsuch that x* € T(x");

) foranyxeAandye T(x), there exists a sequence (Xy),c, with xo = x, x1 = y and
%0 € T(x,1), n>1, that converges to a fixed point x* € AnBof T.

The following lemma presents a well-known result (see for example [22]).
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Lemma 4.1. Let (X, d) be a metric space, d" the metric defined on X X X by (3,4) and D" the
gap functional, respectively H" the generalized Pompeiu—Hausdorff functional generated by d” .
Then for any a,be€ X and any A, B, C,D € Py, (X), the following statements hold:

1) D*((a,b),C X D) = max(D(a, C),D(b,D));

(@ D'(AxB,CxD) = max(D(4,C),D(B,D));
() H'(AXB,CxD) = max{H(A,C),H({B,D)};
@) D'(AXB,BxA)=D(A,B)

Proof. (1)+(2) Since the sets C and D are proximinal then there exists ¢y € C, dy € Dsuch that
D(a,C) =d(a,cy) and D(b,D) = d(b, dp).
Then
D*((a,b),CXD) = inf{d"((a,b), (c,d))|ce C,de D}
= inf{max{d(a,c),d(b,d)}|ce C,d e D}
= max{d(a,cp),d(b,dy)}.

Similarly, we can prove (2).
B H (AXB,CXD) =
max{sup(a,b)eAxB{D*((av b),C X D)}, Sup(c.d)ECXD{D*((Cv d),AXB)}}.

Using statement (1), we have
H* (A X B, C X D) = maX{Sup(a,mEAXB{D(a, C),D(b, D)}7 Sup(cyd)GCXD{D(C, A),D(d, B)}}
=max{H(4,C),H(B,D)}
(4) We use statement (2) for C=A,D =B.
Lemma 4.2. Let (X, d) be a metric space, d~ the metric defined on X X X by 34) . If a
multivalued operator F: X X X — P(X) takes proximinal values with respect to d then the

multivalued operator T : X X X - P(X X X), T(x,y) = (F(x,y),F(y,x)) takes proximinal
values with respect to d".

Proof. For any pair (¢,b) € X X X, F(a,b) is a proximinal set, which means that for any
x € X, there exists c € F(a, b) such that

d(x,c) = D(x,F(a,b)).

In a similar way, for any y € X, there exists d € F(b, a) such that
d(y,d) = Dy, F (b, a)).

Then for any (x,y) € X X X, there exists (¢, d) € T(a, b) such that

d"((x,9), (¢,d)) = max{d(x,c),d(y,d)}
= max{D(x,F(a,b)),D(y,F(b,a))}
=D'((%,), T(a,b)).

The first result in this section is the following theorem.

Theorem 4.2. Let (X,d) be a complete metric space, A,BePy(X), Y =AUB and
F:Y XY — Py (Y) a cyclic coupled ¢-contraction of Ciric type multivalued operator.
Then the following statements hold:



(1) there exist x*,y" € A B such that
xeF(,y), vy eFy, 1),
(that is the pair (x",y") is a coupled fixed point of F );

(2) foreach (a,b) € AXBthere exists a sequence (G, by) e €Y X Ywithay = a,bp = b
and

a, €F(by—1,a,-1),b, EF(ay-1,b,1) for n >1
that converges to a coupled fixed point (x*,y") EANBof F.

Proof. It is easy to observe that

M(x,v,y,u) = M(v,x,u,y), for any x,v€A,y,u €B.

If we change the roles between x and v and similarly for y and #, then the inequality (4.1)
becomes

H(F(v,u),F(y,x)) <o(M(x,v,y,u)). 4.2)

From (4.1) and (4.2) we obtain

max{H (F(x,y),F(u,0)), HEF(,x),F(v,u))} <eo(M(x,0,y,u)).

Let T: Y XY > P(Y XY), T(x,y) = (F(x,9),F(y,x)).

We consider on Y X Y the metric d” defined by (3.4), using the same functionals D" and H*
as in Lemma 4.1.
Forz = (x,y) €A X B,w = (u,v) € BX A, using Lemma 4.1,

H(T(2), T(w)) = H ((F(x,9), F(y,x)), (F(u,v), F (v,u)))
= max{H (F(x,y),F(u,v)),HF(,x),F(v,u))} 4.3)
<e(M(x,v,y,u)).
By Lemma 4.1,

D'(2,T(2)) = max{D(x, F(x,y)), Dy, F(y,x))},
D (w, T(w)) = max{D(u, F(u,v)),D(v,F(v,u))},

%[D* (0, T(2)) + D" (z, T(w))] = %[max{D(u, F(x,)),D(v,F(y,x))}
+ max{D(x, F(u,v)), Dy, F(v,u))}]
> max{% [D(u, F(x,9)) + D(x,F(u,v))],

%[D(uF(y,x)) +D(y, F(v, u))]}.

Using the monotonicity of ¢, (4.3) becomes

Coupled fixed

points of cyclic

type operators

189




AJMS
26,1/2

190

H (T(z), T(w)) < @(max{d* (z,w),D*(z, T (2)), D" (w, T(w)),

%[D* (w, T(2)) + D’ (z, T(u)))]}) , for any z€ A X B,

weBXA,

and because T satisfies the cyclic condition

T(AXB)=(F(AXB),F(BXA)CBXA, T(BXA)CAXB,
where A X B,BX A€ P,(Y X Y), we conclude that 7 is a multivalued cyclic ¢-contraction
of Ciri¢ type.

By Lemma 4.2, the property of the operator F to have proximinal values is transferred to
the operator T, so we are in the conditions of Theorem 4.1.

Then there exists (x*,5") € (A X B)n(B X A) such that (x*,y") € (F(x",y"),F(/",x"))
and for each (a,b) € AXB there exists a sequence (a,,0,),., €Y X Y withay =a,by =
and

(am bn) € (F(bn—lv anfl)7F(an—17 bn—l))a n Z 1

that converges to (x, ).
Hereinafter we define and study the generalized Ulam—Hyers stability of the following
coupled fixed point problem.

Definition 4.3. Let (X, d)beametricspace, Y € P(X),F: Y X Y — P(Y)beamultivalued
operator. By definition, the coupled fixed point problem

xeF(x,y)
{yeF(y,x)’x’yEY 4.4)

is said to be generalized Ulam-Hyers stable if there exists an increasing function
y: R, >R, continuous at 0, with w(0) =0 such that for each ¢ >0 and for each
solution (x,y) € Y X Y of the inequality

max{D(x,F(x,9)),D,F(y,x))} <e,
there exists a solution (x*,y") € Y XY of the coupled fixed point problem such that
max{d(x,x"),d(y,y")} <w(e).
Our stability result is a consequence of the following theorem.

Theorem 4.3 ([21)). Let T : Y — Py (Y) be as in Theorem 4.2, ¢ > 0 and x € Y be such
that D(x, T(x)) <e. Then there exists x* a fixed point of T such that d(x,x) <s(g), where sis
given by Lemma 2.2.

Theorem 4.4. If all the hypotheses of Theorem 4.2 hold, then the coupled fixed point problem
(4.4) is generalized Ulam—Hyers stable.

Proof. Letany ¢ > 0and let (x,y) € Y X Y such that
D(x,F(x,y)) <e
D@, F(y,x))<e.
As before, we consider T: Y XY - P(Y X Y),
T(x,y) = (F(x,9),F(y,x)).



For z = (%,5), Coupled fixed

D'(e, T(2) = max{D(x, F(%.5)), D3, F(3,7)} <. points of cyclic
type operators
Applying Theorem 4.3, there exists a fixed point z* = (x*,3") of T such that d"(z,2") < s(e),
that is there exists a solution (x*, ") of the coupled fixed point problem (4.4) such that

max{d(%,x"),d(7,y")} <s(e). O 191

In the last part of this section we will consider the following best proximity problem for a
cyclic coupled multivalued operator:

If (X,d) is a metric space, A,BeEP(X), Y =AUB F:Y XY —>P(Y) is a coupled
multivalued operator satisfying the cyclic condition F(A X B) CB, F(B X A) CA, then we
are interested in finding (x*,y") € A X Bsuch that

D(x",F(x",y")) =D ,F(y",x")) = D(A,B). 4.5)

(x",»") is said to be a coupled best proximity point of F.
Notice that, in particular, if A nB#§ then (x*,y") is a coupled fixed point of F.

Definition 4.4. Let (X,d) be a metric space, 4,BeP(X), ¥ = AuB. A multivalued
operator F': Y X Y — P(Y) is called a cyclic coupled Ciri¢ type multivalued operator if:

(i) F(A X B)CBand F(B X A)C 4;

(i1) there exists a comparison function ¢: R, — R, such that

H(F(x,9),F(u,v)) <o(M(x,v,y,u) — D(A, B)) + D(A, B),

for any x,v€A, y,u €B.
In 2009, Suzuki, Kikkawa and Vetro introduced the following property.

Definition 4.5. [23]Let A and Bbe nonempty subsets of a metric space (X, d). Then (4, B)
is said to satisfy the property UC if for (,),,c and (2,),,o Sequences in A and (¥,),, @
sequence in B such that d(x,,y,) = D(A,B) and d(z,,y,) = D(A,B) as n— oo, then
d(xy,2,) > 0as 7 — oco.

Example 4.1. [24][23] (1) Any pair of nonempty subsets (A4, B) of a metric space (X, d)
with D(A, B) = 0 satisfies the property UC;
(2) Any pair of nonempty subsets (4, B) of a uniformly convex Banach space with A
convex satisfies the property UC.

Lemma 4.3. Let A and B be nonempty subsets of a metric space (X, d), and d* be the metric
defined on X X X by 34). If (A, B) and (B, A) satisfy the property UC with respect to d then
(A X B,B X A) satisfy the property UC with respect to d.

Proof. We denote D"(A X B,BXA) =D(A,B) =D. Let x, = (a,,b,),2, = (a,,b,) €

n=n

AXB,y, = (B,,a,) € B X Asuch that d"(x,,y,) = Dand d" (z,,y,) = D as n — co.
Then

max{d(anvﬁn)v d(bnv an)} _>D and
max{d(a;uﬁn)v d(b;p aﬂ)} —Das n— .

It is obvious that d(a,, 8,) = D, d(a,, B,) = D and because (A, B) satisfies the property
UC we get d(ay,a,) = 0.
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From d(b,, a,) - D, d(b,,
we get d(b,,b,) = 0.
Finally,

a,) > D as n— oo and using (B, A) satisfies the property UC

d" (x,,2,) = max{d(a,,a,),d(b,,b,)} =0 as n— co.
We recall the following result.

Theorem 4.5 ([25]). Let (X,d) be a complete metric space, A € Py(X),B € P(X) such that
(A, B) satisfies the property UC. Let T : AUB — Py (X)) be a multivalued Ciri¢ type cyclic
operator that is:

() T(A)CBand T(B) CA;
(i1) there exists a comparison function ¢: R, — R such that
H(T(x), T()) <e(M(x,y) — D(A,B)) + D(A, B), where

M(s.9) = max{ d(.9), Dl (), DO T0). 5 DG T0) + DUy 7)1 .

Then the following statements hold:
(1) T has a best proximity point xy €A ;

(2) there exists a sequence (%), With X0 €A, and %41 € T(%,), n >0, such that (x2,)

* neN
converges to x .

The next result is a consequence of the above theorem.

Theorem 4.6. Let (X,d) be a complete metric space, A, B € Py(X) such that (A,B) and
(B, A) satisfy the property UC, and Y = AUB. If F:Y XY — Py (Y) is a cyclic coupled
Ciric type multivalued operator, then the following statements hold:

(i) F has a coupled best proximity point (x*,y") €A X B;
(13) there exist two sequences (Xy) ,crr> Vn) pen With
(x07y0) €AXB, %11 EF(xnayn)yy;Hl EF(,men)v

such that ((Xou, Yon)),er COMVErges to (x°,y").

Proof. Considering againon Y X Y the metric d" defined by (3.4), in a similar manner as in
Theorem 4.2, we obtain that the operator 7: Y X Y - P(Y X Y),

T(x,y) = (F(x,y),F(y,x))

is a multivalued Ciri¢ type cyclic operator which takes proximinal values.
Using Lemma 4.1, the pair (A X B, B X A) satisfies the property UC with respect to d".
Consequently, we are in the conditions of Theorem 4.5, so T has a best proximity point
(«",y")€AXB and there exists a sequence (x,,¥),o; With (%0,%)€A X B and
(i1, V041) € T (2, ,) such that (xz,, Y2, ),y converges to (x*,y") with respect to d".

5. An application to a system of integral equations
We apply the results given by Theorem 3.2 to study the existence and the uniqueness of
solutions of the following system of integral equations:



b Coupled fixed
)= [ Gs)f(s.x(s).5(5)ds points of cyclic
" t€la,b] (51) type operators
D= [ 6t (5.5(5) (s))as
wherea,bER, @ <, GeC(la,b]Xla,B], 0, ), 193

f€C(Ja, )XRXR,R).
Theorem 5.1. We suppose that:
(i) there exist a, p € C([a, b],R) , with a(t) < (t), for any t € [a, b], such that

/ GUE,9)f (5, B(s), als)ds
Sor any t € la, b]; (5.2

(i1) there exists a strong comparison function ¢: R, — R, such that
f (s, 11, u2) = f(s,01,02)| < @(max{fuy — va, [uz — v2[}),
Jor any s € [a, D] and uy, uz, 01,05 ER;
(i) SUp;e, f G(t,s)ds<1;
) (s, -, y) is monotone decreasing for any s € [a, b] and any y € R,

W) (s, x, ) is monotone increasing for any s € [a, b] and any x ER.
Then the system (5.1) has a unique solution (x*,x") € C([a,b], R?), with a <x" <.

Proof. Let us consider
X :=C([a,d],R),and the Chebyshev norm |x| = maxep|*(t)|.

Then (X, |-|,,) is a Banach space. We consider the following closed subsets of X:
A={reX|x<p},B={xeX|x>a},

Y = AuBand the operator F: Y X Y > Y,
b
Fu3)(0)i= [ Glt,s)f(s,x(6),3(6))ds

The system (5.1) is equivalent to

F(x,y)=x
{F(y,x) :y,x,ye Y.

We will prove that F'is cyclic with respect to A and B, that is
F(AXB)CBand F(BXA)CA.

Letx €A and ye B=x(s) < f(s),5(s) = a(s),Vs € [a, b].
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Using the monotonicity of f we have
G(t,s)f (5,%(5),5(s)) 2 G(t,5)f (s, B(5), a(s)),

and from (i), by integration,

/ " G515, x(5),9(5))ds > ),

which means that - 5 ) ) > 0(4), Vi € 0, ] = F(x,) € B.

So F(A X B) CB. In a similar way we have F'(B X A) CA.
Using the conditions (ii) and (iii), and the monotonicity of ¢, for any x,0 € A and y,u € B,
we have

|/ (s, 2(5),9(s)) = f (s, u(s), v(s))| < p(max{|x(s) —u(s)|, [y(s) — v(s)[})

s€la,b]

b
| F(x,3)(t) = Fu,0)(t)| < / G, 5)If (s5,%(5),(5)) = f(s,u(s), 0(s))|ds

b
<e(max{ls — ul. b~ ol.) [ Gt
a
< (max{lx —ul,, |y — vl }), Vi€ e, b].
We have
| F(x,9) — Flu,0)|, < g(max{lx — ul,,, Iy — 0] _}) for any x,0€ A and y,u€B,
so the operator F is a cyclic coupled ¢-contraction of Ciri¢ type.

All the conditions of Theorem 3.2 are satisfied, so 7" has a unique strong coupled fixed
point (x*,x") € AnB, with a(t) <x*(¢) <p(¢t), for any ¢ € [a, b].

Definition 5.1. The system (5.1) is said to be generalized Ulam-Hyers stable if there exists
v: R, - R, increasing, continuous at 0 and y(0) = 0 such that for any &; > 0, &2 > 0and
for any solution (x,y) € C([a, b], R?), of the system

b
\x(t)—/ G(t,s)f (s,x(s),5(s))ds| <&

b
500~ [ 6t 6.5(6). ) ds| <
there exists a solution (x",y") € C([a, b], R?) of the system (5.1) such that for any ¢ € [a, D],

le(t) — 2" (1) <w(e) B
{ |§(t) —j*(t” S:l///(j) , where ¢ = max(¢;, &).

Theorem 5.2. Suppose that the hypotheses of Theorem 5.1 hold. Then the system (5.1) is
generalized Ulam—Hyers stable.

Proof. By Theorem 5.1, the system (5.1) has a unique solution (x*, x) € C([a, b], R?), with
a<x" <p. Applying Theorem 3.6 to the operator F: Y XY - Y,



b
Flr.y)(t) = / G(t, $)f (5, (5),(5))ds,

in the same setting as in the proof of Theorem 5.1, we get the conclusion.
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