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Abstract
The reduced problem of the Navier–Stokes and the continuity equations, in two-dimensional Cartesian
coordinates with Eulerian description, for incompressible non-Newtonian fluids, is considered. The
Ladyzhenskaya model, with a non-linear velocity dependent stress tensor is adopted, and leads to the
governing equation of interest. The reduction is based on a self-similar transformation as demonstrated in
existing literature, for two spatial variables and one time variable, resulting in an ODE defined on a semi-
infinite domain. In our search for classical solutions, existence and uniquenesswill be determined depending on
the signs of two parameters with physical interpretation in the equation. Illustrations are included to highlight
some of the main results.
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1. Introduction
The study of non-Newtonian fluids, both mathematically and physically, has gained much
importance during the last few decades due to their many applications in industry and in
describing physical phenomena. The basic physical theory, and itsmathematical formulation
can be found in [1,8,18]. Many researchers studied non-Newtonian fluids from a numerical or
computational point of view, in some instances accompanied with certain techniques or
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transformations to elucidate investigating the problem [6,9]. Other studies involved existence
and uniqueness of solutions to problems involving non-Newtonian fluids [10,11,20,21]. Many
times, it is found that solutions for Newtonian and non-Newtonian flows are not unique
[7,13,15,17]. In some instances or special cases, exact solutions were established, see for
example [12]. Our interest in this paper is in a Ladyzhenskaya type non-Newtonian fluid [16],
where self-similar transformations of the Navier–Stokes equations, for non-Newtonian
incompressible fluids, lead to an ODE with dependence on one similarity variable. Navier–
Stokes equations in two dimensions, for incompressible non-Newtonian fluids, consist of a
system of PDEs with two spatial variables, and a time variable. However, a two-dimensional
generalization of the well-known self-similar Ansatz reduces the PDE system into an ODE.
This resulting ODE was used for example in [4], to study the compressible Newtonian
Navier–Stokes equations. Symmetry reductions analysis can also be applied to obtain some
solutions, as was done in [14], and as was done for three dimensions in [19].

Recently in [3], the authors considered a self-similar transformation to obtain analytic
solutions of the two-dimensional Navier–Stokes equations, with Eulerian description, for a non-
Newtonian fluid. However, it remains to investigate existence and uniqueness of solutions for
that particular reduced Navier–Stokes equation, with suitable boundary conditions. A similar
problem was studied in [5], but where the parameters were tied together via certain relations,
and where the authors used a different approach to investigate the problem.

We shall discuss existence (or non-existence) and uniqueness of solutions for the resulting
Navier–Stokes reduced problem. In Section 2, we introduce the problem with a brief
derivation including the main ideas leading to the governing equation of interest. The main
results are then derived in Section 3, where we discuss separate cases depending on the sign
of two parameters: the flow behavior index (mathematically an exponent r) and the leading
coefficient k in the governing equation.

2. The problem
Consider the Ladyzhenskaya model of non-Newtonian fluid dynamics, with the following
formulation (c.f. [16]):

ρ
vui

vt
þ ρuj

vui

vxj
¼ −

vp

vxi

þ vΓij

vxj
þ ρFi (1)

vuj

vxj
¼ 0 (2)

where the Einstein summation convention is assumed on the j index. The parameters ρ;u; p
andF represent the density, the two dimensional velocity field, the pressure, and the external
force, respectively. On the other hand, observe that Γij is defined via:

Γij ¼ ðμ0 þ μ1jEð∇uÞjrÞEijð∇uÞ (3)

where μ0; μ1 and r represent the dynamical viscosity, the consistency index, and the flow
behavior index, respectively, and where

Eijð∇uÞ ¼ 1

2

�
vui

vxj
þ vuj

vxi

�
(4)

is the Newtonian linear stress tensor. Observe that x represents the two dimensional
Cartesian coordinates, say x ¼ ðx; yÞ. Now, setting the external force to zero F ¼ 0,
observing that in two dimensions:

AJMS
26,1/2

168



jEj ¼
�
u2x þ v2y þ

1

2

�
u2y þ v2x

��1=2

;

(where u and v are the components of u) and letting:

L ¼ μ0 þ μ1jEjr;
simplifies the formulation, using compact notation, to the following equations:

ux þ vy ¼ 0; (5)

ut þ uux þ vuy ¼ −
px

ρ
þ Lxux þ Luxx þ Ly

2
ðuy þ vxÞ þ L

2
ðuyy þ vxyÞ; (6)

vt þ uvx þ vvy ¼ −
py

ρ
þ Lyvy þ Lvyy þ Lx

2
ðuy þ vxÞ þ L

2
ðvxx þ uxyÞ: (7)

The following transformation (8) (self-similar Ansatz, c.f. [3]) leads to solutions of physical
interest, and shall further simplify the problem consisting of the 3 3 3 PDE system (5)–(7)
given above. Namely, this transformation is given by:

u ¼ t−αf ðηÞ; v ¼ t−βgðηÞ; p ¼ t−γhðηÞ; η ¼ t−δðxþ yÞ (8)

where η is called a similarity variable. The functions f ; g, and h are referred to as shape
functions. We shall consider μ0 ¼ 0; μ1 ≠ 0, and we note that the details of the entire
derivation and simplification process can be found in the references, c.f. [2,3] and the
references therein. We choose to skip those details since our main interest is in the resulting
ODE for f below. However, we do point out that through the simplification process, the shape
functions are assumed to have interrelations relating them to one another, while the following
relations are obtained for the above exponents:

α ¼ β ¼ ð1þ rÞ=2; δ ¼ ð1� rÞ=2; γ ¼ r þ 1: (9)

Solutions of physical relevance and interest will require all exponents in (9) to be positive,
from which we must have: −1 < r < 1. It is noted that in similar power-law problems, a
power-law index n is used and is related to r mathematically via r ¼ n− 1. In this respect,
−1 < r < 0 corresponds to pseudo-plastic or shear-thinning fluid, while 0 < r < 1
corresponds to a shear-thickening fluid. (Since r > 1 has been eliminated, the fluid of
interest here maybe considered as a restricted Ostwald–de Waele-type fluid.) The following
ODE is the reduced and simplified equation that is of our interest, and it is the following
reduced Navier–Stokes equation:

2rþ1ð1þ rÞμ1 f
00 j f 0 jr−1f 0 þ ð1� rÞηf 0 þ ð1þ rÞf ¼ 0: (10)

Observe that this ODE is for f , while g and h are related to f via certain relations as can be
found in the references. Due to the conditions we shall consider, see (12), we shall suppose
f
0
≤ 0. (Observe that if f

0
reaches zero at some point, say f

0 ðη0Þ ¼ 0, then the equation may
become inconsistent in case f ðη0Þ≠ 0 for r > 0, or it may become undefined if r < 0.) By
further assuming

k ¼ 2rþ1ð1þ rÞμ1;
we obtain the equivalent equation (11). Before proceedingwith the analysis, however, observe
that if f

0 ðη0Þ ¼ 0 while f ðη0Þ≠ 0, for some η0 > 0, then Eq. (10) becomes inconsistent for
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positive r. The solution assumes a point of termination at such instances. Solutions also
assume a terminal point for negative values of rwhen f

0 ðη0Þ ¼ 0 as the first term in the ODE
becomes undefined. It is noted that practical values of k > 0were listed in [3], while k < 0 can
be found in the similar Rayleigh problem. So, now, consider:

−kf
00 ð−f 0 Þr þ ð1� rÞηf 0 þ ð1þ rÞf ¼ 0 (11)

We shall make a few observations regarding (11). First, notice that if r ¼ 0 then we have
the equation −kf

00 þ ðηf Þ0 ¼ 0 which leads to a solution: −kf
0 þ ηf ¼ c and therefore

f ðηÞ ¼ f ð0Þeη2=2k þ f
0 ð0Þeη2=2k R η

0 e
−u2=2kdu. This solution approaches zero for k < 0 as

η→∞, and consequently it is an explicit illustration of the existence of a solution when
r ¼ 0; k < 0, which satisfies (12).

Additionally, observe that it is not possible to have f → c≠ 0 as η→∞, for some constant
c≠ 0, unless f reaches c at some finite η. To establish this, let gðηÞ ¼ f ðηÞ− c so that
f ðηÞ ¼ cþ gðηÞ, then we must have gðηÞ→ 0 as η→∞, and therefore −kg

00 ð−g 0 Þrþ
ð1− rÞηg 0 ¼ −ð1þ rÞðcþ gÞ, which upon integration would imply that:

kð−g 0 ðηÞÞrþ1

r þ 1
¼ −ð1þ rÞcη� ð1� rÞηgðηÞ � 2r

Z η

0

gðuÞduþ K;

where K ¼ kð−g0 ð0ÞÞrþ1

rþ1
is a constant. Now, since r > − 1 and the first term on the right-hand

side would make that side of the equation diverge and become unbounded as η→∞, this
would in turn imply that the equation does not balance, or otherwise g

0 ðηÞ has to take on
infinite values as η→∞, which is a contradiction. It is very important to emphasize here that
it will be shown that solutions do exist where f reaches c≠ 0 at a terminal point in finite η:
f ðη0Þ ¼ c≠ 0; f

0 ðη0Þ ¼ 0 for some η0 > 0, as is also shown in numerical illustrations in [3] for
r < 0. The boundary conditions for an equation such as (11) are typically given at 0 and at∞.
The boundary conditions of interest to us take the form:

f ð0Þ ¼ a; f ð∞Þ ¼ 0 (12)

where a > 0.

3. Existence of solutions
To establish existence of solutions, a shooting method is utilized where the condition at
infinity is replaced by an initial condition f

0 ð0Þ: we shall first show that Eq. (11) subject to
f ð0Þ ¼ a (the first of the two conditions in (12)) has solutions for which f

0 ðη0Þ ¼ 0 at some
finite η0 < ∞ and where f ðη0Þ ¼ b > 0 (such solutions terminate at η0 as discussed above)
for some appropriate choice of f

0 ð0Þ. We shall also show that it has solutions that extend to
infinite ηwhile crossing the horizontal axis at some point.

Observe that subtracting 2rf from both sides of Eq. (11) yields the following:

−kf
00 ð−f 0 Þr þ ð1− rÞηf 0 þ ð1− rÞf ¼ −2rf , where now observe that the left-hand side is

an exact derivative. Now integrating from 0 to η and using a dummy variable of integration,
say t, we obtain

ð−f 0 ðηÞÞrþ1 ¼ ð−f 0 ð0ÞÞrþ1 � ðr þ 1Þ
k

�
ð1� rÞηf ðηÞ þ 2r

Z η

0

f ðtÞdt
�
: (13)

To begin with, let us consider the case r > 0; k > 0:
Theorem 1.There exists a unique solution to (11) subject to (12) for r > 0; k > 0, and

where f ðηÞ > 0 for all η > 0.
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Proof. To begin with, we show that for some appropriate choice of the initial condition
f
0 ð0Þ < 0one obtains a solution that terminates at some finite η0 where f

0 ðη0Þ ¼ 0; f ðη0Þ > 0.
Observe that (11) implies that f

00 ð0Þ > 0. We further assume f
00
> 0 on the entire interval

ð0; η0Þwhich will be verified at the end of the proof, and with f
00
> 0 we must have:

ð−f 0 ðηÞÞrþ1
< ð−f 0 ð0ÞÞrþ1 � ðr þ 1Þ

k

�
0þ 2r

Z η

0

ðf ð0Þ þ f
0 ð0ÞtÞdt

�
;

and therefore

ð−f 0 ðηÞÞrþ1
< ð−f 0 ð0ÞÞrþ1 � 2rðr þ 1Þ

k

�
f ð0Þηþ f

0 ð0Þη2�2�:
Taking ð−f 0 ð0ÞÞrþ1

< rðrþ1Þ
k

f ð0Þand j f 0 ð0Þj < f ð0Þ (whichever yields a smaller j f 0 ð0Þj, recall
that f

0 ð0Þ is negative) would in fact show that for η ¼ 1 we have ð−f 0 ð1ÞÞrþ1
< 0, but by

assumption this last quantity should be non-negative (due to f
0
< 0). This contradiction

shows that f
0 ¼ 0 at some finite η0 < 1. Finally one checks that with the additional condition

j f 0 ð0Þj < ðrþ1Þ
2

f ð0Þwe have f 00
> 0 and f > 0 for all η < 1, so that the above arguments hold

(note that this strong condition for j f 0 ð0Þj establishes our point here, but it might be relaxed
significantly once a particular solution is determined).

On the other hand, it can be shown that for large enough j f 0 ð0Þjwe obtain a solution for

which f
0 ðηÞ < 0 for all η > 0, and where f ðηÞ < 0 for all η > η0, for some η0 > 0 (i.e. a

solution that crosses the η-axis). Now observe that for f
0
< 0 it follows from Eq. (11) that

−kf
00 ð−f 0 Þr ¼ −ð1− rÞf 0

− ð1þ rÞf > − ð1þ rÞf , which can be integrated to obtain

ð−f 0 ðηÞÞrþ1
> ð−f 0 ð0ÞÞrþ1 � ðr þ 1Þ

k

Z η

0

f ðtÞdt; (14)

from which we have

ð−f 0 ðηÞÞrþ1
> ð−f 0 ð0ÞÞrþ1 � ðr þ 1Þ

k
f ð0Þη; (15)

by choosing f
0 ð0Þ to be large enough in absolute value such that

ð−f 0 ð0ÞÞrþ1
> ðf ð0ÞÞrþ1 þ ðr þ 1Þ

k
f ð0Þ (16)

then it is guaranteed from (15) and (16) that ð−f 0 ðηÞÞrþ1
> ðf ð0ÞÞrþ1

for all 0 < η < 1, and
therefore f

0 ðηÞ < − f ð0Þ < 0 for all 0 < η < 1, which in turn guarantees the existence of
some η0 < 1 such that f ðη0Þ ¼ f ð0Þ þ R η0

0
f
0 ðtÞdt ¼ 0. Once we have f ðη0Þ ¼ 0 with

f
0 ðη0Þ < 0, then Eq. (11) will show that this solution will satisfy: f ðηÞ < 0; f

0 ðηÞ < 0 for all
η > η0. (We note that the same argument can be used for−1 < r < 0since the exponent r þ 1
is positive for this range of r, as will be needed for later proofs.)

Now to show existence of solutions: given the above results, suppose that y1 is a solution
that terminates at some finite η1 where y

0
1ðη1Þ ¼ 0 and y1ðη1Þ ¼ e > 0. One can find

another solution that terminates at y2ðη2Þ ¼ e=2 for some η2, i.e., y2ðη2Þ ¼ e=2; y
0
2ðη2Þ ¼ 0.

It is not difficult to prove this last mathematical statement, following similar analysis as
above, coupled with the continuity with respect to initial conditions (on the interval ð0; η1Þ).
We, however, leave out some of the obvious details.

In fact, a general assumption that there is aminimum value for a solution f > 0 where f
0

reaches zero so the solution terminates (at say η1, i.e. f ðη1Þ ¼ emin > 0; f
0 ðη1Þ ¼ 0, and where
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no solution with smaller f -values will terminate), leads to a contradiction for the case

r > 0; k > 0. Since then, one can still take a slightly larger j f 0 ð0Þj so that f ðη1Þdecreases very
slightly, while the new j f 0 ðη1Þj is very small so that f ðηÞwill still have to decrease for η > η1.
But on the other hand, f

00 ðηÞwould be large enough for η > η1, and will approach infinity fast
since r > 0, see (11). The new solution will then terminate with a smaller f > 0at say η2 > η1.

We still need to prove that there exists a solution that will not reach f ¼ 0 at finite η,
i:e:, we need to show that f → 0 with f > 0 for all η > 0.

So now with y2ðη2Þ ¼ e=2 as above, observe that if we let δ2 ¼ ð−y02ð0ÞÞ
rþ1

, where y2ð0Þ
is the initial condition corresponding to the solution y2, which is extended to, and terminates

at η2, then Eq. (13) yields the following: δ2 ¼ ðrþ1Þ
k

ðð1− rÞη2
�
e
2

�
þ 2r

R η2
0 y2ðtÞdtÞ since

ð−y02ðη2ÞÞ
rþ1 ¼ 0. Similarly δ1 ¼ ðrþ1Þ

k
ðð1− rÞη1eþ 2r

R η1
0 y1ðtÞdtÞ, where δ1 ¼ ð−y01ð0ÞÞ

rþ1
,

and y1 is the solution extending to η1 with y1ðη1Þ ¼ e; y
0
1ðη1Þ ¼ 0. Therefore

δ2 � δ1 ¼ ðr þ 1Þ
k

�
eð1� rÞ

�η2
2
� η1

�
þ 2r

Z η1

0

ðy2ðtÞ � y1ðtÞÞdt þ 2r

Z η2

η1

y2ðtÞdt
�
:

Observe that the last two terms in parentheses on the right-hand side of the equation above
satisfy:

2r

Z η1

0

ðy2ðtÞ � y1ðtÞÞdt þ 2r

Z η2

η1

y2ðtÞdt < 3e

2
ðη2 � η1Þ;

since the first integral is negative, and the second integral is smaller than the trapezoidal area
under the line extending between ðη1; eÞ and ðη2; e=2Þ. This area is equal to 3e

4
ðη2 − η1Þ, and

after multiplying this area by 2r and recalling that 0 < r < 1, the desired result is obtained.
Now, note that δ2 − δ1 > 0 so we can deduce that eð1− rÞðη2

2
− η1Þ þ 3e

2
ðη2 − η1Þ > 0, and

therefore η2
η1
> 5− 2r

4− r
¼ K > 1, for 0 < r < 1. In this manner, it can be shown that the solution

can be extended to η ¼ ∞ since we can go step by step to y ¼ e=2n; n ¼ 1; 2; 3; . . ., and reach
η > Knη1, where K ¼ 5− 2r

4− r
> 1 as given above.

To verify that f
00
stays negative for the new solution y2 one can check that

f
000 ¼ −f

0 ðηf 00 ð1− rÞ2þ2f
0 Þ þ rð1 þ rÞf f 00

kð−f 0 Þrþ1 . So, on the one hand, if y2ðη1Þ goes significantly below e,

with y
0
2ðη1Þ relatively small in absolute value so that y

00
2ðη1Þ is large, and f

00
approaches

infinity quickly, then it is obvious that f
00
stays positive (from (11)). On the other hand, if y2ðη1Þ

goes slightly below e, say to e0, with y
0
2ðη1Þ becoming relatively large in absolute value, then

keep δ2 small, or close enough to δ1, so that y
0
2ðη1Þ ¼ −e0ð1 þ rÞ

η1ð1− rÞ þ e
0
for some very small e

0
that

will yield y
00
2ðη1Þ ¼ −2y

0
2
ðη1Þ

η1ð1− rÞ2 from (11). Observe now that the above expression for f
000
is

positive at η1 (with both terms in the numerator being positive) and will stay positive with f
00

increasing, and f
0
increasing (becoming closer to zero). The fact that now y

00
2ðη1Þ is relatively

very small and using the above expression for f
000
, shows that by the point where we get to a

terminal point with y
0
2 ¼ 0 and y

00
2 becoming unbounded, it must be that y2 is significantly

smaller than e, and where we leave out some of the details. The process can be repeated to

eventually get to a solution where y2ðη2Þ ¼ e=2 and where y
00
2 > 0 is guaranteed on the

maximal interval of continuation for y2. Observe that this also reinforces our earlier
discussion on the existence of y2 reaching e=2 and terminating.
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To establish uniqueness, suppose that f ðηÞ is a solution that satisfies (11) subject to (12).
Define

FðηÞ ¼ ðr þ 1Þ
k

�
ð1� rÞηf ðηÞ þ 2r

Z η

0

f ðtÞdt
�
;

and note thatFðηÞ is an increasing function such that in the limit we have: FðηÞ→ ð−f 0 ð0ÞÞrþ1

as η→∞, and where f
0 ð0Þ is the initial condition corresponding to the given solution f .

Suppose that gðηÞ is another solution with g
0 ð0Þ≠ f

0 ð0Þ, say ð−g 0 ð0ÞÞrþ1 ¼ ð−f 0 ð0ÞÞrþ1 þ e
with e≠ 0. Take e > 0: the solution g will then satisfy gðηÞ < f ðηÞ, for all η > 0, so that:

GðηÞ ¼ ðr þ 1Þ
k

ðð1� rÞηgðηÞ þ 2r

Z η

0

gðtÞdtÞ≤ FðηÞ; (17)

and where GðηÞ→ ð−g 0 ð0ÞÞrþ1 ¼ ð−f 0 ð0ÞÞrþ1 þ e as η→∞, which follows from our
assumption that g is another solution that satisfies (12). But then we would have

Gð∞Þ > ð−f 0 ð0ÞÞrþ1 ¼ Fð∞Þ, and this last inequality requires GðηÞ > FðηÞ for large η,
which is a contradiction (it contradicts (17)). This completes the proof.

Figure 1 shows a typical solution to the Navier–Stokes equation (11) illustrating the above
result. Another result can readily be obtained here for r > 0; k < 0:

Proposition 2. There exists no solution to (11) subject to (12) for r > 0; k < 0 and where
f ðηÞ≥ 0 for all η > 0.

Proof. Under the hypotheses of the preceding theorem where f ðηÞ > 0 for all η, Eq. (13)
will show that ð−f 0 ðηÞÞrþ1 > ð−f 0 ð0ÞÞrþ1 > 0. This implies that it is not possible to have
f → 0 as η→∞. Nor is it possible to have a solution that reaches zero equilibrium at finite η:
f
0 ðηÞ ¼ 0 when f ðηÞ ¼ 0, for the same reason.
In fact, solutions where r > 0; k < 0, will cross the axis, and will eventually terminate at

some point where f
0 ðη0Þ ¼ 0; f ðη0Þ < 0, for some finite η0. This can be illustrated with the

aid of numerical integrators. (See Figure 2.)

Figure 1.
A typical solution to
the Navier–Stokes

equation (11)
with r > 0; k > 0.

Existence of
Navier–Stokes

equation

173



3.1 The case r < 0; k < 0
As for the case where r < 0; k > 0, we begin by showing that a solution exists where

f
0 ðη0Þ ¼ 0 at some finite η0 > 0: observe that with f

0
< 0; f

00
> 0 we have f ðηÞ > f ð0Þ

þ f
0 ð0Þη, so that Eq. (13) yields:

ð−f 0 ðηÞÞrþ1
< ð−f 0 ð0ÞÞrþ1 � ðr þ 1Þ

k
ðð1� rÞðf ð0Þ þ f

0 ð0ÞηÞηþ 2rf ð0ÞηÞ

< ð−f 0 ð0ÞÞrþ1 � ðr þ 1Þ
k

��
1þ rÞf ð0Þηþ ð1� rÞf 0 ð0Þη2Þ:

Choose f
0ð0Þ small enough in absolute value so that:

f ð0Þ > k

ð1þ rÞ2ð−f
0 ð0ÞÞrþ1 � ð1� rÞ

ð1þ rÞ f
0 ð0Þ:

This choicewill show that a solution exists such that for some η0 < 1, we have f
0 ðη0Þ ¼ 0, and

the solution terminates. It can readily be verified that f
0
< 0; f

00
> 0, within the interval of the

given solution, so that the above arguments stay valid.
On the other hand, there exists a solution which crosses the axis at some finite η. This can

be established using the same arguments in the proof of the preceding theorem, as was stated
earlier. However, observe that since k > 0 and f

0
< 0, we must have

ð1� rÞηf 0 þ ð1þ rÞf > 0 (18)

in order to avoid any inflection point (with f > 0, and since the solution will cross the axis
once it has an inflection point, as the curvaturewill continue to be negative once it is negative).

Observe, now, that inequality (18) implies f
0

f
> −

ð1þrÞ
ð1− rÞη, and therefore f > cη−

ð1þrÞ
ð1−rÞ, where c is a

constant, and −
ð1þrÞ
ð1− rÞ < 0 for −1 < r < 1. Now, if f ¼ ηp where p > −

ð1þrÞ
ð1− rÞ, then the above

inequality for f holds, but inequality (13) will have a divergent term on the right-hand side,
and therefore f

0
will reach zero in finite time say η1, with f ðη1Þ > 0, so that conditions (12)

will not be satisfied. On the other hand, if we let f ðηÞ ¼ cη−
ð1þrÞ
ð1−rÞ þ gðηÞ, with 0 < gðηÞ < ηq

(of order q less than p ¼ −
ð1þrÞ
ð1− rÞ, q is real and q < p) then the above inequality still holds, but

Figure 2.
A typical solution to
Eq. (11) with r > 0;
k < 0. It crosses
the axis.
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again a contradiction occurs upon substituting into (11), where we are led again to obtaining
an inflection point. Therefore:

Theorem 3. There exists no solution to (11) subject to (12) if r < 0, and k > 0.

The dynamics here is the following: Solutions exist where f
0
reaches zero at some η0 > 0,

and f ðηÞ ¼ b for all η0 < η < ∞, for some large enough b > 0. However, there exists a certain

value for b > 0where further reduction of the initial condition f
0ð0Þ (increase in absolute value

of the gradient) shall yield a solution that crosses the horizontal axis (f
0ðηÞdoes not reach zero

but rather stays negative). This happens since the decay of solutions (changes in f and f
0
)

becomes extremely slow with f
00
proportional to ðð1− rÞη f 0 þ ð1þ rÞf Þðf 0 Þ−r (namely

observe the factor ðf 0 Þ−r with f
0
≈ 0 and where now r < 0), allowing the non-autonomous

term ð1− rÞηf 0
with the presence of η, to exceed the last term ð1þ rÞf , of the governing

equation (11). This leads to a change in curvature, and therefore solutions will cross the axis,
and will not satisfy f ð∞Þ ¼ 0 from (12). This is verified by numerical integrators, and is
illustrated in Figure 3: In particular the two upper curves reach a pointwhere (11) is undefined

with f
0 ¼ 0. Such solutions reach a terminal point, that they cannot be extended beyond. The

solution in the bottom illustrates that there is a minimum for f with those terminal points,
after which solutions change curvature, and eventually will cross the axis.

3.2 The case r < 0; k < 0
Unlike some of the previous cases, observe that in this case the governing equation (11)

implies that f
00ð0Þ < 0. In fact, the curvature stays negative for some interval say ð0; η0Þ, until

f ðηÞdrops in value while f 0ðηÞbecomesmore negative (see (11)). Then f
00 ðηÞbecomes positive,

and it can readily be established that f
00ðηÞ stays positive, on the infinite interval, if j f 0 ð0Þj is

large enough. Additionally, if the solution crosses the horizontal axis then f
00 ðηÞwill continue

to be positive in this case of k < 0, and in fact if the solution does cross the axis it will

eventually terminate with f
0 ¼ 0: once the solution attains a negative value, say f0, then we

have f
00 ð−f 0 Þr > ð1þ rÞ f0=k, so that −ð−f 0 ðηÞÞrþ1

≥ ðð1þ rÞ2f0=kÞðη− η0Þ− ð−f 0 ðη0ÞÞrþ1,

which implies that f
0 ðηÞwill reach zero at finite η. With the existence of solutions that cross

the axis and then reach f
0 ¼ 0, as stated by the remarks given above, another result is needed:

Figure 3.
A set of solutions to Eq.
(11) with r < 0; k > 0.
They do not satisfy

(12): There is a
minimum for f where
f
0
reaches zero and (11)
becomes undefined
(a terminal point),

beyond which
solutions change
curvature with

f
0 ðηÞ < 0 on the entire

solution domain.
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Lemma4.Two different solutions of (11)with the same initial f(0), but two different initial

gradients f
0
1ð0Þ≠ f

0
2ð0Þ, do not intersect for any η > 0. Furthermore, if f

0
2ð0Þ < f

0
1ð0Þ with

f2ð0Þ≤ f1ð0Þ, then f
0
2ðηÞ < f

0
1ðηÞ for all η > 0.

Proof. Given a solution with say f
0
1ð0Þ, take another solution with f

0
2ð0Þ < f

0
1ð0Þ, and

where f2ð0Þ ¼ f1ð0Þ. The two solutions will be different in, at least a small interval say ð0; η0Þ,
and f2 < f1 on that interval. If the two solutions intersect, then ηf ðηÞwould be the same for f1
and f2 at the point of intersection, and therefore the right-hand side of (13) would be larger for
the solution f2. This, in turn, implies that f2ðηÞ is larger than f1ðηÞ in absolute value, so that

f
0
2ðηÞ < f

0
1ðηÞ at the point of intersection, and now this is a contradiction (which in fact can

also be illustrated geometrically, as well as analytically).
Now, using the continuity with respect to initial conditions, it can be concluded that the

solution f2 with the larger initial absolute gradient j f 0
2ð0Þj > j f 0

1ð0Þjwill always have a larger
j f 0

2ðηÞj, at all η > 0where f
0
1ðηÞ < 0 (i.e. avoiding a situationwhere f

0ðηÞ ¼ 0). Otherwise, at an

η where f
0
2ðηÞ ¼ f

0
1ðηÞ, let us say that e > 0 represents the difference between the two

solutions: f2ðηÞ ¼ f1ðηÞ− e. Then, observe that we would have f
00
2 ðηÞ > f

00
1 ðηÞ, where f

00
2 ðηÞ is

larger precisely by the amount eð1þ rÞð−f 0 Þ−r=k (see (11)). Nowwe can take esmall enough so
that the two solutions would intersect at some point, say at ηþ Δη (an argument here can be
made, for example, using a Taylor series expansion). This contradicts the first result in the

lemma, proven above. Now, note that the possibility f
0
2ðηÞ > f

0
1ðηÞ would imply that

f
0
2ðη0Þ ¼ f

0
1ðη0Þat some 0 < η0 < η, since f

0
2ð0Þ < f

0
1ð0Þ. Therefore, the obtained contradiction

would still eliminate this last possibility. This result can be generalized using similar
arguments for f2ð0Þ < f1ð0Þ.

With solutions that reach f
0 ¼ 0; f ¼ constant < 0, and the above lemma, we may

“construct” a solution that reaches zero equilibrium (f ¼ 0) at finite η: given a solution that
reaches equilibrium at a constant f ¼ c < 0, take another solution with a smaller j f 0 ð0Þj so
that it reaches a terminal point f ¼ d > c, at a smaller value of η (with f

0 ðηÞ ¼ 0). (This is a
consequence of the preceding lemma.) Proceed in this fashion to find a solution that reaches
zero at finite η (See Figure 4). Another way to view this is the following: we have solutions that
cross the horizontal axis at η0 with a negative f

0 ðη0Þ, so that taking another solution with a
smaller j f 0 ð0Þj leads to a less negative f 0 ðη0Þat η0, and with f ðη0Þ > 0. If the change in f

0 ð0Þ is
small enough, the new solutionwill then cross the axis, but at a larger ηandwith a smaller j f 0 j

Figure 4.
A typical solution to
Eq. (11) with
r < 0; k < 0. It reaches
zero equilibrium at
finite η ( ≈ 30 in
this particular figure).
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(at the point of crossing). This process can be continued until the required solution is reached.
So this solution is established here, mathematically, as a limiting case.

Remark. Observe that the two different views above involve the same set of solutions.
Theorem 5. Solutions to (11) subject to (12) exist for r < 0; k < 0, and where f ðηÞ≥ 0 for

all η > 0.
In fact, analysis of Eq. (13) suggests that other solutions may exist but where f ðηÞ > 0 for

all η > 0, and with possibly an infinite number of points where the solution changes
curvature. In such a case, the quantity ηf ðηÞdoes not approach zero due to balancing positive
and negative terms in (13), which cannot approach zero. Furthermore, it can be easily checked
that any solution of (11), with r < 0; k < 0; f ð0Þ > 0, and any choice of f

0 ð0Þ < 0, will satisfy
f
0 ðηÞ < 0 for all η > 0 as long as f ðηÞ > 0, and cannot approach an equilibrium f ¼ c > 0.

4. Conclusions
We studied a reduced problem from the Navier–Stokes and the continuity equations in two-
dimensional Cartesian coordinates, with Eulerian description, for incompressible non-
Newtonian fluids. We have shown the existence of positive solutions to the reduced ODE,
f ≥ 0, f

0
≤ 0, and where f ð∞Þ ¼ 0. Such solutions exist if rk > 0. Those solutions may not be

unique if the flow behavior index r < 0. On the other hand, positive solutions do not exist if
rk < 0. Additionally, a solution exists and has been explicitly expressed when r ¼ 0; k < 0.
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