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Abstract
The purpose of this paper is to introduce the implicit midpoint rule (IMR) of nonexpansive mappings in
2- uniformly convex hyperbolic spaces and study its convergence. Strong and△-convergence theorems based
on this algorithm are proved in this new setting. The results obtained hold concurrently in uniformly convex
Banach spaces, CATð0Þ spaces and Hilbert spaces as special cases.
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1. Introduction
The iterativemethods for approximating fixed points of nonexpansivemappings have received
a great attention due to the fact that in many practical problems, the controlling operators are
nonexpansive (cf. [16]). The iterativemethods ofMann [17] andHalpern [9] are verypopular (see
also [20]). An implicit iterative method was proposed [25] and studied in [7,12]. The IMR is a
powerful numerical method for solving ordinary differential equations and differential
algebraic equations. For related works in this context, we refer the reader to [2,5,20,22].

For the ordinary differential equation

y
0 ðtÞ ¼ gðtÞ; y0 ¼ yð0Þ; (1.1)
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IMR generates a sequence fyng via the relation
1

h
ðynþ1 � ynÞ ¼ g

�ynþ1 þ yn

2

�

where h > 0 is a step size. It is well known that if g: ℝk
→ℝk is Lipschitzian continuous and

sufficiently smooth, then the sequence fyng converges to the exact solution of (1.1) as h→ 0
uniformly over t ∈ ½0; a� for any fixed a > 0.

Based on the above fact, Alghamdi et al. [1] presented the following IMR for nonexpansive
mappings in the setting of a Hilbert space H:

ynþ1 ¼ ð1� tnÞyn þ tnT
�ynþ1 þ yn

2

�
(1.2)

where tn ∈ ð0; 1Þ and T : H →H is a nonexpansive mapping and established weak
convergence of (1.2) to the fixed point of T under some control conditions on ftng.

The extension of a linear version of a known result (usually in Banach spaces or Hilbert
spaces) to metric spaces is very important. As an IMR for nonexpansive mappings involves
general convex combinations, sowe need some convex structure in ametric space to define an
IMR on a nonlinear domain.

Let C be a nonempty subset of a metric space ðM ; dÞ and T : C→C a mapping. Set
F ðTÞ ¼ fx ∈ M : Tx ¼ xg. The mapping T is: (i) nonexpansive if dðT x;T yÞ≤ dðx; yÞ
for all x; y∈C (ii) quasi-nonexpansive if dðTx; yÞ≤ dðx; yÞ for all x∈C and y∈FðTÞ (iii)
semi-compact if for any bounded sequence fxng in C satisfying dðxn;T xnÞ→ 0, there
exists a subsequence fxnigof fxngsuch that xni → x∈C (iv) completely continuous if every
bounded sequence fxng in C implies that fT xng has a convergent subsequence. A
sequence fxng is Fej�er monotone with respect to a subset C ofM if dðxnþ1; xÞ≤ dðxn; xÞ for
all x∈C:

For a bounded sequence fxng in a metric space M, set

rðx; fxngÞ ¼ lim sup
n→∞

dðx; xnÞ
for all x∈M.

The asymptotic radius of fxngwith respect to C ⊆ M is defined as

rðfxngÞ ¼ inf
x∈C

r ðx; fxngÞ:

A point y∈C is called the asymptotic centre of fxngwith respect to C ⊆ M if

rðy; fxngÞ≤ rðx; fxngÞ for all x∈C:

The set of all asymptotic centres of fxng is denoted by AðfxngÞ.
A sequence fxng in M, is △-convergent to x∈M ð△− limn xn ¼ xÞ if x is the unique

asymptotic centre of fung for every subsequence fung of fxng. It has been observed that
△-convergence in metric spaces constitutes an analogue of weak convergence in Hilbert
spaces and both coincide in Hilbert spaces.

Let ðM ; dÞbe a metric space. Suppose that there exists a family F of metric segments such
that any two points x; y inM are endpoints of a unique metric segment ½x; y�∈ F (½x; y� is an
isometric image of the real line interval ½0; dðx; yÞ�). We denote by z the unique point
αx⊕ ð1−αÞy of ½x; y�which satisfies

dðx; zÞ ¼ ð1� αÞdðx; yÞ and dðz; yÞ ¼ αdðx; yÞ for α∈ I ¼ ½0; 1�:
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Such metric spaces are usually called convex metric spaces [18]. A convex metric space
M is hyperbolic if

dðαx⊕ ð1� αÞy; αz⊕ ð1� αÞwÞ≤ αdðx; zÞ þ ð1� αÞ dðy;wÞ (1.3)

for all x; y; z;w∈M and α∈ I.
For z ¼ w, the hyperbolic inequality reduces to convex structure of Takahashi [23]

dðαx⊕ ð1� αÞy; zÞ≤αdðx; zÞ þ ð1� αÞdðy; zÞ:

A nonempty subset C of a hyperbolic space M is convex if αx⊕ ð1− αÞy∈C for all x; y∈C
and α∈ I . A few examples of nonlinear hyperbolic spaces are Hadamard manifolds [4], the
Hilbert open unit ball equipped with the hyperbolic metric [8] and the CATð0Þ spaces [14,15]
while normed spaces and their subsets are linear hyperbolic spaces. Throughout this paper,
we denote 1

2 x⊕
1
2 y by

x⊕ y
2 .

A hyperbolic space M is uniformly convex if

δðr; εÞ ¼ inf

�
1� 1

r
d
�
a;
x⊕ y

2

�
: dða; xÞ≤ r; dða; yÞ≤ r; dðx; yÞ≥ rε

�
> 0;

for any a∈M, r > 0 and ε > 0.
Xu [24], extensively used the concept of p-uniform convexity; its nonlinear version in

hyperbolic spaces for p ¼ 2 has been introduced by Khamsi and Khan [13] as under:
For a fixed a∈M ; r > 0; ε > 0, define

ψðr; εÞ ¼ inf

�
1

2
dða; xÞ2 þ 1

2
dða; yÞ2 � d

�
a;
x⊕ y

2

�2
�

where the infimum is taken over all x; y∈M such that dða; xÞ≤ r; dða; yÞ≤ r and dðx; yÞ≥ rε.
We say that M is 2-uniformly convex if

cM ¼ inf
nψðr; εÞ

r2ε2
: r > 0; ε > 0

o
> 0:

It has been shown in [13] that any CATð0Þ space is 2-uniformly convex hyperbolic space
with cM ¼ 1

4 .
From now onwards we assume that M is a uniformly convex hyperbolic space with the

property that for every s≥ 0; ε > 0, there exists ηðs; εÞ > 0 depending on s and ε such that
δðr; εÞ > ηðs; εÞ > 0 for any r > s.

Using the concept ofmetric segment ½x; y�, we translate (1.2) for nonexpansivemappings in
a hyperbolic space as follows:

x0 ¼ x∈C;

xnþ1 ¼ αnT
�xn ⊕ xnþ1

2

�
⊕ ð1� αnÞxn;

(1.4)

where fαng is the sequence in ð0; 1Þ satisfying (C1): lim infn→∞αn > 0 and (C2): α2
nþ1 ≤ λα2

n

for some λ > 0:
The following known results are needed in the sequel.

Lemma 1.1 ([3]). Let C be a nonempty closed subset of a complete metric space ðM ; dÞ and
fxng be a Fej�er monotone with respect to C. Then fxng strongly converges to x∈C if and only
if limn→∞dðxn;CÞ ¼ 0.
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Lemma 1.2 ([6]). Let C be a nonempty closed and convex subset of a complete uniformly
convex hyperbolic space M. Then every bounded sequence fyng in M has a unique asymptotic
centre with respect to C that lies in C.
Lemma 1.3 ([10]). Suppose that M is a 2-uniformly convex hyperbolic space. Then for any
θ∈ ð0; 1Þ, we have that

dðu; θx⊕ ð1� θÞyÞ2 ≤ θdðu; xÞ2 þ ð1� θÞdðu; yÞ2 � 4cM min
�
θ2; ð1� θÞ2�dðx; yÞ2;

for all u; x; y∈M and cM is the number as given above.
Our purpose in this paper is to approximate fixed point of nonexpansive mappings using

iterative method (1.4) in a 2-uniformly convex hyperbolic spaces. This work provides a
unified approach to convergence results in Hilbert spaces, uniformly convex Banach spaces
and CATð0Þ spaces.

2. Convergence in 2-uniformly convex hyperbolic spaces
Lemma 2.1. Let C be a nonempty convex subset of a complete hyperbolic space M and
T : C→C a nonexpansive mapping. Then the sequence fxng in (1.4) is well defined.

Proof. Define S : C→C by

Sx ¼ α0T
�x0 ⊕ x

2

�
⊕ ð1� α0Þx0:

With the help of (1.3), we have

dðSx; SyÞ ¼ d
�
α0T

�x0 ⊕ x

2

�
⊕ ð1� α0Þx0; α0T

�x0 ⊕ y

2

�
⊕ ð1� α0Þx0

�

≤ α0d
�
T
�x0 ⊕ x

2

�
;T

�x0 ⊕ y

2

��

≤ α0d
�x0 ⊕ x

2
;
x0 ⊕ y

2

�

≤
α0

2
dðx; yÞ:

This gives that S is a contraction with contraction constant α02 ∈ ð0; 1Þ. Therefore by Banach

contraction principle, there is a unique element x1 ∈C such that x1 ¼ Sx1 ¼ α0T
�
x0 ⊕ x1

2

�
⊕

ð1− α0Þx0. Hence x1 is achieved. Similarly, we can find x2 and so on. So in general,

xnþ1 ¼ αnT
�xn ⊕ xnþ1

2

�
⊕ ð1� αnÞxn: ,

Lemma 2.2. Let C be a nonempty convex subset of a complete 2-uniformly convex hyperbolic
space M and T : C→C a nonexpansive mapping such that FðTÞ≠f. Then for the sequence
fxng in (1.4), we have the following: (i) limn→∞dðxn; pÞ exists for all p∈FðTÞ

(ii)
P∞

n¼1αnd ðxn; xnþ1Þ < ∞

(iii)
P∞

n¼1α
2
nð1− αnÞ2d

�
xn;Tðxn ⊕ xnþ1

2

��2

< ∞.

Proof. Let p∈FðTÞ. Applying Lemma 1.3 to (1.4), we have that
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dðxnþ1; pÞ2 ¼ d
�
αnT

�xn ⊕ xnþ1

2

�
⊕ ð1� αnÞxn; p

�2

≤ αnd
�
T
�xn ⊕ xnþ1

2

�
; p
�2

þ ð1� αnÞdðxn; pÞ2

� 4cM min
�
α2
n; ð1� αnÞ2

�
d
�
xn;T

�xn ⊕ xnþ1

2

��2

≤ αnd
�xn ⊕ xnþ1

2
; p
�2

þ ð1� αnÞdðxn; pÞ2

� 4cMα2
nð1� αnÞ2d

�
xn;T

�xn ⊕ xnþ1

2

��2

≤ αnd

�
1

2
dðxn; pÞ2 þ 1

2
dðxnþ1; pÞ2 � CM

4
dðxn; xnþ1Þ2

	

þ ð1� αnÞdðxn; pÞ2 � 4cMα2
nð1� αnÞ2d

�
xn;T

�xn ⊕ xnþ1

2

��2

:

That is, �
1� αn

2

�
dðxnþ1; pÞ≤

�
1� αn

2

�
dðxn; pÞ � αnCM

4
dðxn; xnþ1Þ2

� 4cMα2
nð1� αnÞ2d

�
xn;T

�xn ⊕ xnþ1

2

��2

which further implies that

dðxnþ1; pÞ≤ dðxn; pÞ � αnCM

2ð2� αnÞ dðxn; xnþ1Þ:

� 8cMα2
nð1� αnÞ2

2ð2� αnÞ d
�
xn;T

�xn ⊕ xnþ1

2

��2

:

The above inequality provides the following three inequalities:

dðxnþ1; pÞ≤ dðxn; pÞ; (2.1)

αnCM

2ð2� αnÞ dðxn; xnþ1Þ≤ dðxn; pÞ � dðxnþ1; pÞ (2.2)

and

8cMα2
nð1� αnÞ2

2ð2� αnÞ d
�
xn;T

�xn ⊕ xnþ1

2

��2

≤ dðxn; pÞ � dðxnþ1; pÞ: (2.3)

From (2.1), it follows that limn→∞dðxn; pÞ exists, that is, (i) holds.
Since αn ∈ ð0; 1Þ, therefore αn ≤ αn

2ð2− αnÞ. Hence (2.2) becomes

αndðxn; xnþ1Þ≤ 1

CM

½dðxn; pÞ � dðxnþ1; pÞ�: (2.4)

Let m≥ 1 be any positive integer. Then from (2.4), we have thatXm
n¼1

αndðxn; xnþ1Þ ≤
1

CM

½dðx1; pÞ � dðxmþ1; pÞ�≤ dðx1; pÞ
CM

:
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Let m→∞. Then X∞
n¼1

αndðxn; xnþ1Þ ≤
dðx1; pÞ
CM

< ∞:

That is,

X∞
n¼1

αndðxn; xnþ1Þ < ∞;

proving (ii). Similarly, from (2.3), we have

X∞
n¼1

α2
nð1� αnÞ2d

�
xn;T

�xn ⊕ xnþ1

2

��2

< ∞: ,

Lemma 2.3. Let C be a nonempty convex subset of a complete 2-uniformly convex hyperbolic
space M and T : C→C a nonexpansive mapping such that FðTÞ≠f. Then for the sequence
fxng in (1.4), we have that limn→∞dðxn; xnþ1Þ ¼ 0.

Proof. Consider

dðxnþ1; xnþ2Þ ¼ d
�
αnþ1T

�xnþ1 ⊕ xnþ2

2

�
⊕ ð1� αnþ1Þxnþ1; xnþ1

�

≤ αnþ1d
�
xnþ1;T

�xnþ1 ⊕ xnþ2

2

��

≤ αnþ1d
�
xnþ1;T

�xn ⊕ xnþ1

2

��

þ αnþ1d
�
T

�xn ⊕ xnþ1

2

�
;T

�xnþ1 ⊕ xnþ2

2

��

≤ αnþ1d
�
xnþ1;T

�xn ⊕ xnþ1

2

��

þ αnþ1d
�xn ⊕ xnþ1

2
;
xnþ1 ⊕ xnþ2

2

�

≤ αnþ1ð1� αnÞd
�
xn;T

�xn ⊕ xnþ1

2

��

þ αnþ1d
�xn ⊕ xnþ1

2
;
xnþ1 ⊕ xnþ2

2

�

≤ αnþ1ð1� αnÞ d
�
xn;T

�xn ⊕ xnþ1

2

��

þ αnþ1

2
ðdðxn; xnþ1Þ þ dðxnþ1; xnþ2ÞÞ:

Therefore

�
1� αnþ1

2

�
dðxnþ2; xnþ1Þ≤ αnþ1ð1� αnÞd

�
xn;T

�xn ⊕ xnþ1

2

��
þ αnþ1

2
dðxn; xnþ1Þ

which further implies that
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dðxnþ1; xnþ2Þ≤ 2αnþ1ð1� αnÞ
2� αnþ1

d
�
xn;T

�xn ⊕ xnþ1

2

��

þ αnþ1

2� αnþ1

dðxn; xnþ1Þ

≤ 2αnþ1ð1� αnÞd
�
xn;T

�xn ⊕ xnþ1

2

��

þ αnþ1d ðxn; xnþ1Þ:
For some A > 0;B > 0 and using the assumption α2nþ1 ≤ λα2n, we further derive that

dðxnþ1; xnþ2Þ2 ≤ 4Aα2
nþ1ð1� αnÞ2d

�
xn;T

�xn ⊕ xnþ1

2

��2

þ Bα2
nþ1dðxn; xnþ1Þ2

≤ 4Aλα2
nþ1ð1� αnÞ2d

�
xn;T

�xn ⊕ xnþ1

2

��2

þ Bα2
nþ1dðxn; xnþ1Þ2

≤ 4Aλα2
nð1� αnÞ2d

�
xn;T

�xn ⊕ xnþ1

2

��2

þ Bλα2
ndðxn; xnþ1Þ2

≤ 4Aλα2
nð1� αnÞ2d

�
xn;T

�xn ⊕ xnþ1

2

��2

þ Bλαndðxn; xnþ1Þ2:
Hence by Lemma 2.2(ii)–(iii), we have that

X∞
n¼1

dðxnþ1; xnþ2Þ2 < ∞:

This in turn implies that

lim
n→∞

dðxn; xnþ1Þ ¼ 0: , (2.5)

Lemma 2.4. Let C be a nonempty closed and convex subset of a complete 2-uniformly convex
hyperbolic space M and T : C→C a nonexpansive mapping such that FðTÞ≠f. Then for the
sequence fxng in (1.4), we have that limn→∞dðxn;TxnÞ ¼ 0.

Proof. The condition lim infn→∞αn > 0 implies that 0 < 1
αn

≤ 1
α for sufficiently large n.

The inequality

d
�
xn;T

�xn ⊕ xnþ1

2

��
≤ dðxn; xnþ1Þ þ d

�
xnþ1;T

�xn ⊕ xnþ1

2

��

≤ dðxn; xnþ1Þ þ ð1� αnÞd
�
xn;T

�xn ⊕ xnþ1

2

��
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implies that

d
�
xn;T

�xn ⊕ xnþ1

2

��
≤

1

αn

dðxn; xnþ1Þ≤ 1

α
dðxn; xnþ1Þ:

By taking lim supn→∞ on both sides in the above inequality and then appealing to Lemma 2.3,
we get that

lim
n→∞

d
�
xn;T

�xn ⊕ xnþ1

2

��
¼ 0: (2.6)

Finally, the inequality

dðxn;T xnÞ≤ d
�
xn;T

�xn ⊕ xnþ1

2

��
þ d

�
T
�xn ⊕ xnþ1

2

�
;T xn

�

≤ d
�
xn;T

�xn ⊕ xnþ1

2

��
þ d

�xn ⊕ xnþ1

2
; xn

�

≤ d
�
xn;T

�xn ⊕ xnþ1

2

��
þ 1

2
dðxnþ1; xnÞ

together with (2.5) and (2.6) provides that

lim
n→∞

dðxn;TxnÞ ¼ 0: , (2.7)

The following concept is needed to establish strong convergence of (1.4).
Let f be a nondecreasing function on ½0;∞Þwith f ð0Þ ¼ 0 and f ðtÞ > 0 for all t ∈ ð0;∞Þ.

Then the mapping T : C→C with FðTÞ≠f; satisfies condition (A) [21] if

dðx;T xÞ≥ f ðdðx;FðTÞÞÞ for x∈C;

where dðx;FðTÞÞ ¼ inffdðx; yÞ : y∈FðTÞg.
Using condition(A) and Lemma 2.4, we obtain the following strong convergence result.
Theorem 2.5. Let C be a nonempty closed and convex subset of a complete 2-uniformly

convex hyperbolic space M and T : C→C a nonexpansive mapping such that FðTÞ≠f. If the
mapping T : C→C satisfies condition(A), then the sequence fxng in (1.4), strongly converges to
a fixed point of T.

Proof. By Lemma 2.4, limn→∞dðxn;T xnÞ ¼ 0. Now condition(A) implies that
limn→∞dðxn;FðTÞÞ ¼ 0. Finally, by Lemma 1.1, fxng strongly converges to a fixed point
of T: ,

Here are our other strong convergence results.
Theorem 2.6. Let C be a nonempty closed and convex subset of a complete 2-uniformly

convex hyperbolic space M and T : C→C a nonexpansive mapping such that FðTÞ≠f. If T is
semi-compact, then the sequence fxng in (1.4) strongly converges to a fixed point of T.

Proof. By Lemma 2.4, we have that limn→∞dðxn;T xnÞ ¼ 0. Since limn→∞dðxn; pÞ exists
for each p∈FðTÞ, fxng is bounded. As limn→∞dðxn;T xnÞ ¼ 0 and T is semi-compact, so
there is a subsequence fxnig of fxng such that xni → q∈C and hence Txni →Tq. Therefore,
limi→∞dðxni;TxniÞ ¼ 0 implies that dðTq; qÞ ¼ 0. That is, q∈FðTÞ. Since limn→∞dðxn; pÞ
exists and xni → q, xn → q: ,

Theorem 2.7. Let C be a nonempty closed and convex subset of a complete 2-uniformly
convex hyperbolic space M and T : C→C a nonexpansive mapping such that FðTÞ≠f. If T is
completely continuous, then the sequence fxng in (1.4), strongly converges to a fixed point of T.

Proof. Since fxng is bounded and T is completely continuous, fTxng has a convergent
subsequence say fTxnig. Therefore by (2.7), fxnigconverges. Let limi→∞xni ¼ υ. By continuity
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of T and (2.7), we have that Tυ ¼ υ. By Lemma 2.2, limn→∞dðxn; υÞ exists and so fxng
strongly converges to υ: ,

We now present our △-convergence result.
Theorem 2.8. Let C be a nonempty closed and convex subset of a complete 2-uniformly

convex hyperbolic space M and T : C→C a nonexpansive mapping such that FðTÞ≠f. Then
the sequence fxng in (1.4), △-converges to a fixed point of T.

Proof. It follows from Lemma 2.1 that fxng is bounded in C. By Lemma 1.2, fxng has a
unique asymptotic centre, that is,ACðfxngÞ ¼ fyg. Let fwngbe any subsequence of fxngsuch
that ACðfwngÞ ¼ fwg. We claim that w∈FðTÞ. By Lemma 2.4, we have that

lim
n→∞

dðwn;TwnÞ ¼ 0:

The nonexpansive mapping T satisfies the following inequality:

dðwn;TwÞ≤ dðwn;TwnÞ þ dðwn;wÞ
which further implies that

lim sup
n→∞

dðwn;TwÞ≤ lim sup
n→∞

dðwn;TwnÞ þ lim sup
n→∞

dðwn;wÞ ¼ lim sup
n→∞

dðwn;wÞ:

By the uniqueness of asymptotic centre, we have Tw ¼ w. Therefore FðTÞ≠f. If y≠w, then
by the uniqueness of asymptotic centre and the fact that limn→∞ dðxn; xÞ exists for each
x∈FðTÞ, we have that

lim sup
n→∞

dðwn;wÞ < lim sup
n→∞

dðwn; yÞ
≤ lim sup

n→∞

dðxn; yÞ
< lim sup

n→∞

dðxn;wÞ
¼ lim sup

n→∞

dðwn;wÞ:

This is a contradiction and therefore y ¼ w. This proves that fxng, △-converges
to x∈FðTÞ: ,

Remark 2.9. (1) All the results of this paper instantly hold in Hilbert spaces, uniformly
convex Banach spaces satisfying Opial property and CAT(0) spaces; (2) The results of
Alghamdi et al. [1] are corollaries of our corresponding results; (3) The interested reader is
referred to [11] for another notion of p-uniformly convex metric spaces; (4) The two control
conditions: (C1)and (C2) in our algorithm (1.4) are satisfied by the sequence αn ¼ 1− 1

nþ1 .

3. Application
Weknow thatL2½0; 1� is a Hilbert space and hence it is a 2-uniformly convex hyperbolic space.
Suppose that h: ½0; 1�→ ½0; 1� and F : ½0; 1�3 ½0; 1�3ℝ→ℝ are continuous functions and F
satisfies the Lipschitz continuity condition, i.e.,

jFðt; λ; xÞ � Fðt; s; yÞj≤ jx� yj for t; s∈ ½0; 1� and x; y∈ℝ:

Consider a Fredholm integral equation of the form

xðtÞ ¼ hðtÞ þ
Z 1

0

Fðt; s; xðsÞÞds for t ∈ ½0; 1�: (3.1)

It has been shown in [19] that the solution of Eq. (3.1) exists in L2½0; 1�. To find an
approximate solution of this equation, we define S : L2½0; 1�→L2½0; 1� by
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SxðtÞ ¼ hðtÞ þ
Z 1

0

Fðt; s; xðsÞÞds for t ∈ ½0; 1�:

For x; y∈L2 ½0; 1�, we calculate

jjSx� Syjj2 ¼
Z 1

0

jSxðtÞ � SyðtÞj2dt

¼
Z 1

0






Z 1

0

ðFðt; s; xðsÞÞ � Fðt; s; yðsÞÞÞds





2

dt

≤

Z 1

0






Z 1

0

jxðsÞ � yðsÞjds





2

dt

≤

Z 1

0

jxðsÞ � yðsÞj2ds ¼ jjx� yjj2:

So S is nonexpansive. For any function x0 ∈L2½0; 1�, we define a sequence of functions fxng in
L2½0; 1� by

xnþ1 ¼ αnS
�xn þ xnþ1

2

�
þ ð1� αnÞxn

where αn ∈ ð0; 1Þ such that lim infn→∞αn > 0 and α2
nþ1 ≤ λα2

n for some λ > 0. Now by
Theorem 2.8, fxngweakly converges to the fixed point of S which is a solution of Eq. (3.1).
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