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Abstract
The purpose of this paper is to extend the recent results of Okeke et al. (2018) to the class of multivalued
ρ-quasi-contractive mappings in modular function spaces. We approximate fixed points of this class of
nonlinear multivalued mappings in modular function spaces. Moreover, we extend the concepts ofT -stability,
almost T -stability and summably almost T -stability to modular function spaces and give some results.
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1. Introduction
It is known that there is a close relationship between the problem of solving a nonlinear
equation and that of approximating fixed points of a corresponding contractive type operator
(see, e.g. [4,17]). Hence, there is a practical and theoretical interest in approximating fixed
points of several contractive type operators. For over a century now, the study of fixed point
theory of multivalued nonlinear mappings has attracted many well-known mathematicians
and mathematical scientists (see, e.g. Khan et al. [13]). The motivation for such studies stems
mainly from the usefulness of fixed point theory results in real-world applications, as inGame
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Theory and Market Economy and in other areas of mathematical sciences such as in
Nonsmooth Differential Equations.

Modular function spaces are natural generalizations of both function and sequence
variants of several important, from application perspective, spaces like Musielak–Orlicz,
Orlicz, Lorentz, Orlicz–Lorentz, Kothe, Lebesgue, Calderon–Lozanovskii spaces and
several others. Interest in quasi-nonexpansive mappings in modular function spaces stems
mainly in the richness of structure of modular function spaces, that – besides being Banach
spaces (or F-spaces in a more general settings) – are equipped with modular equivalents of
norm or metric notions and also equipped with almost everywhere convergence and
convergence in submeasure. It is known that modular type conditions are much more
natural as modular type assumptions can be more easily verified than their metric or norm
counterparts, particularly in applications to integral operators, approximation and fixed
point results. Moreover, there are certain fixed point results that can be proved only using
the apparatus of modular function spaces. Hence, fixed point theory results in modular
function spaces, in this perspective, should be considered as complementary to the fixed
point theory in normed and metric spaces (see, e.g. [10]). Several authors have proved very
interesting fixed points results in the framework of modular function spaces, (see, e.g.
[10,11,15,18]).

It is our purpose in the present paper to extend the recent results of Okeke et al. [17] to the
class of multivalued ρ-quasi-contractive mappings, which is known to be wider than
the class of Zamfirescu operators (see, e.g. [5]) in modular function spaces. We approximate
the fixed point of these classes of nonlinear multivalued mappings in modular function
spaces. Moreover, we extend the concepts of T -stability, almost T -stability and summably
almost T -stability to modular function spaces. Consequently, we define the concepts of
ρ-T -stable, ρ-almostT -stable and ρ-summably almostT -stable in modular function spaces.
We prove that some fixed point iterative processes are ρ-summably almost T -stable with
respect to T, where T is a multivalued ρ-quasi-contractive mapping in modular function
spaces.

2. Preliminaries
In this study, we letΩdenote a nonempty set and Σ a nontrivial σ-algebra of subsets ofΩ. Let
P be a δ-ring of subsets of Ω, such that E ∩ A∈P for any E ∈P and A∈Σ. Let us assume
that there exists an increasing sequence of sets Kn ∈P such that Ω ¼ ∪Kn (for instance, P
can be the class of sets of finite measure in a σ-finite measure space). By 1A, we denote the
characteristic function of the setA inΩBy εwe denote the linear space of all simple functions
with supports fromP. ByM∞we denote the space of all extended measurable functions, i.e.,
all functions f : Ω→ ½−∞;∞� such that there exists a sequence fgng⊂ ε, jgnj≤ jf j and
gnðωÞ→ f ðωÞ for each ω∈Ω.

Definition 2.1. Let ρ : M∞ → ½0;∞�be a nontrivial, convex and even function.We say that
ρ is a regular convex function pseudomodular if

(1) ρð0Þ ¼ 0;

(2) ρ is monotone, i.e.,j f ðωÞj≤ jgðωÞj for any ω∈Ω implies ρð f Þ≤ ρðgÞ, where
f ; g∈M∞;

(3) ρ is orthogonally subadditive, i.e., ρð f 1A∪BÞ≤ ρð f 1AÞ þ ρð f 1BÞ for any A;B∈Σ
such that A∩B≠ 0=, f ∈M∞;

(4) ρ has Fatou property, i.e.,j fnðωÞj↑j f ðωÞj for all ω∈Ω implies ρð fnÞ↑ρð f Þ, where
f ∈M∞;
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(5) ρ is order continuous in ε, i.e., gn ∈ ε and j gnðωÞj↓0 implies ρðgnÞ↓0.
A set A∈Σ is said to be ρ-null if ρðg1AÞ ¼ 0 for every g ∈ ε. A property pðωÞ is said to hold
ρ-almost everywhere (ρ-a.e.) if the set {ω∈Ω : pðωÞ does not hold} is ρ-null. As usual, we
identify any pair of measurable sets whose symmetric difference is ρ-null as well as any pair
of measurable functions differing only on a ρ-null set. With this in mind we define

MðΩ;Σ;P; ρÞ ¼ f f ∈M∞ : j f ðωÞj < ∞ ρ-a:e:g;
where f ∈MðΩ;Σ;P; ρÞ is actually an equivalence class of functions equal ρ-a.e. rather than
an individual function. Where no confusion exists, we shall write M instead
of MðΩ;Σ;P; ρÞ.

The following definitions were given in [12].

Definition 2.2. Let ρ be a regular function pseudomodular;

(a) we say that ρ is a regular convex function modular if ρð f Þ ¼ 0 implies f ¼ 0 ρ-a.e.

(b) we say that ρ is a regular convex function semimodular if ρðα f Þ ¼ 0 for every α > 0
implies f ¼ 0 ρ-a.e.

It is known (see, e.g. [10]) that ρ satisfies the following properties:

(1) ρð0Þ ¼ 0 iff f ¼ 0 ρ-a.e.

(2) ρðα f Þ ¼ ρð f Þ for every scalar αwith jαj ¼ 1 and f ∈M.

(3) ρðα f þ βgÞ≤ ρð f Þ þ ρðgÞ if αþ β ¼ 1, α; β ≥ 0 and f ; g∈M.

ρ is called a convex modular if, in addition, the following property is satisfied:
ð30 Þ ρðα f þ βgÞ≤ αρð f Þ þ βρðgÞ if αþ β ¼ 1, α; β ≥ 0 and f ; g ∈M.
The class of all nonzero regular convex function modulars on Ω is denoted by ℜ.

Definition 2.3. The convex function modular ρ defines the modular function space Lρ as

Lρ ¼ f f ∈M; ρðλf Þ→ 0 as λ→ 0g:
Generally, the modular ρ is not subadditive and therefore does not behave as a norm or a
distance. However, the modular space Lρ can be equipped with an F-norm defined by

k fkρ ¼ inf

�
α > 0 : ρ

�
f

α

�
≤ α
�
:

In the case ρ is convex modular,

k fkρ ¼ inf

�
α > 0 : ρ

�
f

α

�
≤ 1

�
:

defines a norm on the modular space Lρ, and it is called the Luxemburg norm.

Lemma 2.1 ([10]). Let ρ∈ℜ. Defining L0
ρ ¼ ff ∈Lρ; ρðf ; :Þ is order continuousg and

Eρ ¼ f f ∈Lρ; λf ∈L0
ρ for every λ > 0g, we have

(i) Lρ � L0
ρ � Eρ;

(ii) Eρ has the Lebesgue property, i.e., ρðα f ;DkÞ→ 0, for α > 0, f ∈Eρ and Dk ↓∅;

(iii) Eρ is the closure of ε (in the sense of k:kρ ).
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Definition 2.4. A nonzero regular convex function ρ is said to satisfy the Δ2-condition, if
supn≥ 1ρð2fn;DkÞ→ 0 as k→∞ whenever fDkg decreases to � and supn≥ 1ρðfn;DkÞ→ 0
as k→∞.

If ρ is convex and satisfies Δ2-condition, then Lρ ¼ Eρ.
The following uniform convexity type properties of ρ can be found in [6].

Definition 2.5. Let ρ be a nonzero regular convex function modular defined on Ω
(i) Let r > 0, e > 0. Define

D1ðr; eÞ ¼ fð f ; gÞ : f ; g ∈Lρ; ρð f Þ≤ r; ρðgÞ≤ r; ρð f � gÞ≥ erg:
Let

δ1ðr; eÞ ¼ inf

�
1� 1

r
ρ
�
f þ g

2

�
: ðf ; gÞ∈D1ðr; eÞ

�
if D1ðr; eÞ≠ 0=;

and δ1ðr; eÞ ¼ 1 if D1ðr; eÞ ¼ 0=. We say that ρ satisfies ðUC1Þ if for every r > 0, e > 0,
δ1ðr; eÞ > 0. Observe that for every r > 0, D1ðr; eÞ≠ 0=, for e > 0 small enough.

(ii) We say that ρ satisfies ðUUC1Þ if for every s≥ 0, e > 0, there exists η1ðs; eÞ > 0
depending only on s and e such that δ1ðr; eÞ > η1ðs; eÞ > 0 for any r > s.

(iii) Let r > 0, e > 0. Define

D2ðr; eÞ ¼
�
ðf ; gÞ : f ; g∈Lρ; ρðf Þ≤ r; ρðgÞ≤ r; ρ

�
f � g

2

�
≥ er

�
:

Let

δ2ðr; eÞ ¼ inf

�
1� 1

r
ρ
�
f þ g

2

�
: ðf ; gÞ∈D2ðr; eÞ

�
; if D2ðr; eÞ≠ 0=;

and δ2ðr; eÞ ¼ 1 if D2ðr; eÞ ¼ 0=. We say that ρ satisfies ðUC2Þ if for every r > 0, e > 0,
δ2ðr; eÞ > 0. Observe that for every r > 0, D2ðr; eÞ≠ 0=, for e > 0 small enough.

(iv) We say that ρ satisfies ðUUC2Þ if for every s≥ 0, e > 0, there exists η2ðs; eÞ > 0
depending only on s and e such that δ2ðr; eÞ > η2ðs; eÞ > 0 for any r > s.

(v) We say that ρ is strictly convex ðSCÞ, if for every f ; g ∈Lρ such that ρðf Þ ¼ ρðgÞ and
ρ
�

fþg
2

�
¼ ρðf ÞþρðgÞ

2 , there holds f ¼ g.

Proposition 2.1. ([10]).The following conditions characterize relationship between the above
defined notions:

(i) ðUUCiÞ0ðUCiÞ for i ¼ 1; 2.

(ii) δ1ðr; eÞ≤ δ2ðr; eÞ.
(iii) ðUC1Þ0ðUC2Þ.
(iv) ðUUC1Þ0ðUUC2Þ.
(v) If ρ is homogeneous (e.g. it is a norm), then all the conditions ðUC1Þ,ðUC2Þ,ðUUC1Þ,

ðUUC2Þ are equivalent and δ1ðr; 2eÞ ¼ δ1ð1; 2eÞ ¼ δ2ð1; eÞ ¼ δ2ðr; eÞ.
Definition 2.6. Let Lρ be a modular space. The sequence ffng⊂Lρ is called:

(1) ρ-convergent to f ∈Lρ if ρðfn − f Þ→ 0 as n→∞;

(2) ρ-Cauchy, if ρðfn − fmÞ→ 0 as n and m→∞.
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Observe that ρ-convergence does not imply ρ-Cauchy since ρ does not satisfy the triangle
inequality. In fact, one can easily show that this will happen if and only if ρ satisfies the
Δ2-condition.

Kilmer et al. [14] defined ρ-distance from an f ∈Lρ to a set D⊂Lρ as follows:

distρðf ;DÞ ¼ inffρðf � hÞ : h∈Dg:

Definition 2.7. A subset D⊂Lρ is called:

(1) ρ-closed if the ρ-limit of a ρ-convergent sequence of D always belongs to D;

(2) ρ-a.e. closed if the ρ-a.e. limit of a ρ-a.e. convergent sequence ofD always belongs toD;

(3) ρ-compact if every sequence in D has a ρ-convergent subsequence in D;

(4) ρ-a.e. compact if every sequence in D has a ρ-a.e. convergent subsequence in D;

(5) ρ-bounded if

diamρðDÞ ¼ supfρðf � gÞ : f ; g ∈Dg < ∞:

The following famous result was proved by Zamfirescu [19]

Theorem 2.1. ([19]). Let ðX ; dÞ be a complete metric space, and let T : X →X be a mapping
for which there exist real numbers a; b and c satisfying 0 < a < 1, 0 < b; c < 1

2 such that for
each pair x; y∈X at least one of the following is true:

(z1) dðTx;TyÞ≤ adðx; yÞ,
(z2) dðTx;TyÞ≤ b½dðx;TxÞ þ dðy;TyÞ�,
(z3) dðTx;TyÞ≤ c½dðx;TyÞ þ dðy;TxÞ�.

Then T has a unique fixed point p and the Picard iteration process fxng defined by

xnþ1 ¼ Txn; n ¼ 0; 1; 2; . . .

converges to p for any x0 ∈X.

Remark2.1.Any operatorTwhich satisfies the contractive conditions (z1)–(z3) of Theorem
2.1 is called a Zamfirescu operator (see e.g. [5]) and is denoted by Z .

The following class of quasi-contractive operators was introduced on a normed spaceE by
Berinde [5]:

kTx� Tyk≤ δkx� yk þ LkTx� xk;
for any x; y∈E, 0≤ δ < 1 and L≥ 0. He proved that this class is wider than the class of
Zamfirescu operators.

A set D⊂Lρ is called ρ-proximinal if for each f ∈Lρ there exists an element g∈D such that
ρðf − gÞ ¼ distρðf ;DÞ. We shall denote the family of nonempty ρ-bounded ρ-proximinal subsets
ofD by PρðDÞ, the family of nonempty ρ-closed ρ-bounded subsets ofD by CρðDÞ and the family
of ρ-compact subsets of D by KρðDÞ. Let Hρð:; :Þbe the ρ-Hausdorff distance on CρðLρÞ, that is,

HρðA;BÞ ¼ max

�
sup
f∈A

distρðf ;BÞ; sup
g∈B

distρðg;AÞ
�
;A;B∈CρðLρÞ:

A multivalued map T : D→CρðLρÞ is said to be:

(a) ρ-contraction mapping if there exists a constant k∈ ½0; 1Þ such that

HρðTf ;TgÞ≤ kρðf � gÞ; for all f ; g∈D: (2.1)
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(b) ρ-nonexpansive (see, e.g. Khan and Abbas [12]) if

HρðTf ;TgÞ≤ ρðf � gÞ; for all f ; g ∈D: (2.2)

(c) ρ-quasi-nonexpansive mapping if

HρðTf ; pÞ≤ ρðf � pÞ for all f ∈D and p∈FρðTÞ: (2.3)

(d) ρ-quasi-contractive mapping if

HρðTf ;TgÞ≤ δρðf � gÞ þ LρðTf � f Þ; for all f ; g ∈D; 0≤ δ < 1 and L≥ 0: (2.4)

A sequence ftng⊂ ð0; 1Þ is called bounded away from 0 if there exists a > 0 such that tn ≥ a
for every n∈ℕ. Similarly, ftng⊂ ð0; 1Þ is called bounded away from 1 if there exists b < 1
such that tn ≤ b for every n∈ℕ.

Recently, Okeke et al. [17] approximated the fixed point of multivalued ρ-quasi-
nonexpansivemappings using the Picard–Krasnoselskii hybrid iterative process. It is known
that this iteration process converges faster than all of Picard, Mann, Krasnoselskii and
Ishikawa iterative processes when applied to contraction mappings (see, Okeke and Abbas
[16]). The following is the analogue of the Picard–Krasnoselskii hybrid iterative process in
modular function spaces: Let T : D→PρðDÞ be a multivalued mapping and ffng⊂D be
defined by the following iteration process:(

fnþ1 ∈PT
ρ ðgnÞ

gn ¼ ð1� λÞfn þ λPT
ρ ðvnÞ; n∈ℕ;

(2.5)

where vn ∈PT
ρ ðfnÞ and 0 < λ < 1. It is our purpose in the present paper to prove some new

fixed point theorems using this iteration process in the framework of modular function
spaces.

The following is the analogue of the S-iteration, introduced by Agarwal et al. [1] in
modular function spaces. 8<

:
f0 ∈D

fnþ1 ¼ ð1� αnÞun þ αnvn
gn ¼ ð1� βnÞ fn þ βnun;

(2.6)

where un ∈PT
ρ ðfnÞ, vn ∈PT

ρ ðgnÞ, the sequences fαng; fβng⊂ ð0; 1Þ are bounded away from
both 0 and 1. It is known (see, e.g. [9]) that the S-iteration converges faster than the Mann
iteration process and the Ishikawa iteration process for Zamfirescu operators.

Definition 2.8. A sequence ffng⊂D is said to be Fej�er monotone with respect to subset
PρðDÞ of D if ρðfnþ1 − pÞ≤ ρðfn − pÞ, for all p∈PT

ρ ðDÞ of D, n∈ℕ.

Definition 2.9. ([12]). A multivalued mappingT : D→CρðDÞ is said to satisfy condition (I)
if there exists a nondecreasing function l : ½0;∞Þ→ ½0;∞Þ with lð0Þ ¼ 0, lðrÞ > 0 for all
r∈ ð0;∞Þ such that distρðf ;Tf Þ≥ lðdistρðf ;FρðTÞÞÞ for all f ∈D.

The following Lemma will be needed in this study.

Lemma 2.2. ([2]). Let ρ∈ℜ satisfy the Δ2-condition. Let ffng andfgng be two sequences in
Lρ. Then

lim
n→∞

ρðgnÞ ¼ 00lim sup
n→∞

ρðfn þ gnÞ ¼ lim sup
n→∞

ρðfnÞ
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and

lim
n→∞

ρðgnÞ ¼ 00lim inf
n→∞

ρðfn þ gnÞ ¼ lim inf
n→∞

ρðfnÞ:

Lemma 2.3. ([6]). Let ρ satisfyðUUC1Þ and letftkg⊂ ð0; 1Þ be bounded away from 0 and 1.
If there exists R > 0 such that

lim sup
n→∞

ρðfnÞ≤R; lim sup
n→∞

ρðgnÞ≤R

and

lim
n→∞

ρðtnfn þ ð1� tnÞgnÞ ¼ R;

then limn→∞ ρðfn − gnÞ ¼ 0.
A function f ∈Lρ is called a fixed point of T : Lρ →PρðDÞ if f ∈Tf . The set of all fixed

points of T will be denoted by FρðTÞ.
Lemma 2.4. ([12]). Let T : D→PρðDÞ be a multivalued mapping and

PT
ρ ðf Þ ¼ fg ∈Tf : ρðf � gÞ ¼ distρ ðf ;Tf Þg:

Then the following are equivalent:

(1) f ∈FρðTÞ, that is, f ∈Tf.

(2) PT
ρ ðf Þ ¼ ffg, that is,f ¼ g for each g ∈PT

ρ ðf Þ.
(3) f ∈FðPT

ρ ðf ÞÞ, that is, f ∈PT
ρ ðf Þ. Further FρðTÞ ¼ FðPT

ρ ðf ÞÞ where FðPT
ρ ðf ÞÞ

denotes the set of fixed points of PT
ρ ðf Þ.

Lemma 2.5. ([3]). Let fang∞n¼0,fbng∞n¼0 be sequences of nonnegative numbers and 0≤ q < 1,
such that

anþ1 ≤ qan þ bn; for all n≥ 0:

(i) If limn→∞bn ¼ 0, then limn→∞an ¼ 0.

(ii) If
P∞

n¼0bn < ∞, then
P∞

n¼0an < ∞.

3. Approximation of fixed points in modular function spaces
We begin this section with the following proposition

Proposition 3.1. Let ρ satisfy ðUUC1Þ and Δ2-condition. Let D be a nonempty ρ-closed,
ρ-bounded and convex subset of Lρ. Let T : D→PρðDÞ be a multivalued mapping such that PT

ρ
is a ρ-quasi-contractive mapping, satisfying contractive condition (2.4) and FρðTÞ≠ 0=. Let
ffng⊂Dbe defined by the two step S-iterative process (2.6), such that the sequencesfαng⊂ ð0; 1Þ
andfβng⊂ ð0; 1Þare bounded away from both 0 and 1. Then the S-iterative process (2.6) is Fej�er
monotone with respect toFρðTÞ.
Proof. Let p∈FρðTÞ. By Lemma 2.4, PT

ρ ðpÞ ¼ fpg and FρðTÞ ¼ FðPT
ρ Þ. Using relation (2.4)

and (2.6), we obtain the following estimate:

ρðfnþ1 � pÞ ¼ ρ½ð1� αnÞun þ αnvn � p�
¼ ρ½ð1� αnÞðun � pÞ þ αnðvn � pÞ�: (3.1)
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The convexity of ρ implies

ρðfnþ1 � pÞ≤ ð1� αnÞρðun � pÞ þ αnρðvn � pÞ
≤ ð1� αnÞHρðPT

ρ ðfnÞ;PT
ρ ðpÞÞ þ αnHρðPT

ρ ðgnÞ;PT
ρ ðpÞÞ:

(3.2)

From relation (2.4), with f ¼ p, g ¼ fn and also f ¼ p, g ¼ gn, then we obtain the following
estimates from relation (3.2):

HρðPT
ρ ðfnÞ;PT

ρ ðpÞÞ≤ δρðfn � pÞ: (3.3)

HρðPT
ρ ðgnÞ;PT

ρ ðpÞÞ≤ δρðgn � pÞ: (3.4)

Using (3.3), (3.4) and the fact that 0≤ δ < 1 in (3.2), we have

ρðfnþ1 � pÞ≤ ð1� αnÞδρðfn � pÞ þ αnδρðgn � pÞ
≤ ð1� αnÞρðfn � pÞ þ αnρðgn � pÞ: (3.5)

Next, we have

ρðgn � pÞ ¼ ρ½ð1� βnÞfn þ βnun � p�
¼ ρ½ð1� βnÞðfn � pÞ þ βnðun � pÞ�: (3.6)

By convexity of ρ, we have

ρðgn � pÞ≤ ð1� βnÞρðfn � pÞ þ βnHρðPT
ρ ðfnÞ;PT

ρ ðpÞÞ: (3.7)

Using (2.4) with f ¼ p and g ¼ fn and the fact that 0≤ δ < 1, relation (3.7) yields:

ρðgn � pÞ≤ ð1� βnÞρðfn � pÞ þ βnδρðfn � pÞ
≤ ð1� βnÞρðfn � pÞ þ βnρðfn � pÞ
¼ ρðfn � pÞ:

(3.8)

Using (3.8) in (3.5), we obtain: (3.9)

ρðfnþ1 � pÞ≤ ð1� αnÞρðfn � pÞ þ αnρðfn � pÞ
¼ ρðfn � pÞ: (3.9)

Hence, the S-iteration (2.6) is Fej�er monotone with respect to FρðTÞ. The proof of Proposition
3.1 is completed. ,

Next, we prove the following proposition.

Proposition 3.2. Let ρ satisfy the ðUUC1Þ and Δ2-condition. Suppose that D is a nonempty
ρ-closed, ρ-bounded and convex subset of Lρ. LetT : D→PρðDÞ be a multivalued mapping such

that PT
ρ is a ρ-quasi-contractive mapping, satisfying contractive condition (2.4) and FρðTÞ≠ 0=.

Let ffng⊂D be defined by the two step S-iterative process (2.6), such that the
sequencesfαng⊂ ð0; 1Þ andfβng⊂ ð0; 1Þ are bounded away from both 0 and 1. Then

(i) the sequence ffng is bounded.
(ii) for each f ∈D,fρðfn − f Þg converges.

Proof. Since ffng is Fej�er monotone as shown in Proposition 3.1. Using the fact that ρ satisfies
the Δ2-condition, we can easily show (i) and (ii). This completes the proof of Proposition 3.2.,
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Theorem 3.1. Let ρ satisfy ðUUC1Þ and Δ2-condition. Let D be a ρ-closed, ρ-bounded and
convex subset of a ρ-complete modular space Lρ and T : D→PρðDÞ be a multivalued mapping

such that PT
ρ is a ρ-quasi-contractive mapping, satisfying contractive condition (2.4) and

FρðTÞ≠ 0=. Let ffng⊂Dbe defined by the two step S-iterative process (2.6) and f0 ∈D, where the
sequences fαng,fβng⊂ ð0; 1Þ are bounded away from both 0 and 1, satisfying

P∞

n¼0αn ¼ ∞.
Then ffng converges strongly to the fixed point of T.

Proof. Let p∈FρðTÞ. By Lemma 2.4, PT
ρ ðpÞ ¼ fpg and FρðTÞ ¼ FðPT

ρ Þ. Using relation (2.4)
and (2.6), we obtain the following estimate:

ρðfnþ1 � pÞ ¼ ρ½ð1� αnÞun þ αnvn � p�
¼ ρ½ð1� αnÞðun � pÞ þ αnðvn � pÞ�: (3.10)

The convexity of ρ implies (3.11)

ρðfnþ1 � pÞ≤ ð1� αnÞρðun � pÞ þ αnρðvn � pÞ
≤ ð1� αnÞHρðPT

ρ ðfnÞ;PT
ρ ðpÞÞ þ αnHρðPT

ρ ðgnÞ;PT
ρ ðpÞÞ:

(3.11)

From relation (2.4), with f ¼ p, g ¼ fn and also f ¼ p, g ¼ gn, then we obtain the following
estimates from relation (3.11):

HρðPT
ρ ðfnÞ;PT

ρ ðpÞÞ≤ δρðfn � pÞ: (3.12)

HρðPT
ρ ðgnÞ;PT

ρ ðpÞÞ≤ δρðgn � pÞ: (3.13)

Using (3.12) and (3.13) in (3.11), we have

ρðfnþ1 � pÞ≤ ð1� αnÞδρðfn � pÞ þ αnδρðgn � pÞ: (3.14)

Next, we have

ρðgn � pÞ ¼ ρ½ð1� βnÞfn þ βnun � p�
¼ ρ½ð1� βnÞðfn � pÞ þ βnðun � pÞ�: (3.15)

By convexity of ρ, we have

ρðgn � pÞ≤ ð1� βnÞρðfn � pÞ þ βnHρðPT
ρ ðfnÞ;PT

ρ ðpÞÞ: (3.16)

Using (2.4) with f ¼ p and g ¼ fn, then relation (3.16) yields:

ρðgn � pÞ≤ ð1� βnÞρðfn � pÞ þ βnδρðfn � pÞ: (3.17)

Using (3.17) in (3.14), we have

ρðfnþ1 � pÞ≤ ð1� αnÞδρðfn � pÞ þ αnδð1� βnð1� δÞÞρðfn � pÞ
≤ ½1� αnð1� δð1� βnð1� δÞÞÞ�ρðfn � pÞ: (3.18)

Using (3.18), we inductively obtain

ρðfnþ1 � pÞ≤
Yn
k¼0

½1� αkð1� δð1� βkð1� δÞÞÞ�ρðf0 � pÞ;

n ¼ 0; 1; 2; 3; . . .

(3.19)

Using the fact that 0≤ δ < 1, fαng; fβng⊂ ð0; 1Þ are bounded away from both 0 and 1,
satisfying

P∞

n¼0αn ¼ ∞, relation (3.19) yields
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lim
n→∞

Yn
k¼0

½1� αkð1� δð1� βkð1� δÞÞÞ� ¼ 0; (3.20)

which implies that (3.19) becomes:

lim
n→∞

ρðfnþ1 � pÞ ¼ 0: (3.21)

Consequently, fn → p∈FρðTÞ. The proof of Theorem 3.1 is completed. ,

Theorem 3.2. Let ρ satisfy ðUUC1Þ and Δ2-condition. Let D be a nonempty ρ-closed,
ρ-bounded and convex subset of Lρ. Let T : D→PρðDÞ be a multivalued mapping such that PT

ρ
is a ρ-quasi-contractive mapping, satisfying contractive condition (2.4) and FρðTÞ≠ 0=. Let
ffng⊂D be defined by the two step S-iterative process (2.6) and f0 ∈D, where the sequences
fαng,fβng⊂ ð0; 1Þ are bounded away from both 0 and 1. Then limn→∞ρðfn − pÞ exists for all
p∈FρðTÞ and limn→∞distρðfn;PT

ρ ðfnÞÞ ¼ 0.

Proof. Let p∈FρðTÞ. By Lemma 2.4, PT
ρ ðpÞ ¼ fpg and FρðTÞ ¼ FðPT

ρ Þ. Using relation (2.4)
and (2.6), we obtain the following estimate:

ρðfnþ1 � pÞ ¼ ρ½ð1� αnÞun þ αnvn � p�
¼ ρ½ð1� αnÞðun � pÞ þ αnðvn � pÞ�: (3.22)

The convexity of ρ implies

ρðfnþ1 � pÞ≤ ð1� αnÞρðun � pÞ þ αnρðvn � pÞ
≤ ð1� αnÞHρðPT

ρ ðfnÞ;PT
ρ ðpÞÞ þ αnHρðPT

ρ ðgnÞ;PT
ρ ðpÞÞ:

(3.23)

From relation (2.4), with f ¼ p, g ¼ fn and also f ¼ p, g ¼ gn, then we obtain the following
estimates from relation (3.23):

HρðPT
ρ ðfnÞ;PT

ρ ðpÞÞ≤ δρðfn � pÞ: (3.24)

HρðPT
ρ ðgnÞ;PT

ρ ðpÞÞ≤ δρðgn � pÞ: (3.25)

Using (3.24), (3.25) and the fact that 0≤ δ < 1 in (3.23), we have

ρðfnþ1 � pÞ≤ ð1� αnÞδρðfn � pÞ þ αnδρðgn � pÞ
≤ ð1� αnÞρðfn � pÞ þ αnρðgn � pÞ: (3.26)

Next, we have

ρðgn � pÞ ¼ ρ½ð1� βnÞfn þ βnun � p�
¼ ρ½ð1� βnÞðfn � pÞ þ βnðun � pÞ�: (3.27)

By convexity of ρ, we have

ρðgn � pÞ≤ ð1� βnÞρðfn � pÞ þ βnHρ

�
PT
ρ ðfnÞ;PT

ρ ðpÞ
�
: (3.28)

Using (3.25) with f ¼ p and g ¼ fn and the fact that 0≤ δ < 1, relation (3.28) yields:

ρðgn � pÞ≤ ð1� βnÞρðfn � pÞ þ βnδρðfn � pÞ
≤ ð1� βnÞρðfn � pÞ þ βnρðfn � pÞ
¼ ρðfn � pÞ:

(3.29)
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Using (3.29) in (3.26), we obtain:

ρðfnþ1 � pÞ≤ ð1� αnÞρðfn � pÞ þ αnρðfn � pÞ
¼ ρðfn � pÞ: (3.30)

This implies that limn→∞ρðfn − pÞ exists for all p∈FρðTÞ.
Let

lim
n→∞

ρðfn � pÞ ¼ K; where K ≥ 0: (3.31)

Now, we show that

lim
n→∞

distρ
�
fn;P

T
ρ ðfnÞ

� ¼ 0: (3.32)

Since distρðfn;PT
ρ ðfnÞÞ≤ ρðfn − unÞ, it suffices to show that

lim
n→∞

ρðfn � unÞ ¼ 0: (3.33)

Now,

ρðun � pÞ≤Hρ

�
PT
ρ ðfnÞ;PT

ρ ðpÞ
�
≤ ρðfn � pÞ: (3.34)

This implies that

lim sup
n→∞

ρðun � pÞ≤ lim sup
n→∞

ρðfn � pÞ: (3.35)

By (3.31), we have

lim
n→∞

sup ρðun � pÞ≤K: (3.36)

Also from (3.29), we have

lim sup
n→∞

ρðgn � pÞ≤ lim sup
n→∞

ρðfn � pÞ; (3.37)

so that

lim sup
n→∞

ρðgn � pÞ≤K: (3.38)

Moreover, the inequality

ρðvn � pÞ≤HρðPT
ρ ðgnÞ;PT

ρ ðpÞÞ≤ ρðgn � pÞ≤ ρðfn � pÞ; (3.39)

this implies that

lim sup
n→∞

ρðvn � pÞ≤ lim sup
n→∞

ρðfn � pÞ; (3.40)

hence,

lim sup
n→∞

ρðvn � pÞ≤K: (3.41)

Now,

lim
n→∞

ρðfnþ1 þ pÞ ¼ lim
n→∞

ρ½ð1� αnÞun þ αnvn � p�
¼ lim

n→∞
ρ½ð1� αnÞðun � pÞ þ αnðvn � pÞ�

¼ K:

(3.42)
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Using (3.35), (3.41), (3.42) and Lemma 2.3, we have

lim
n→∞

ρðvn � unÞ ¼ 0: (3.43)

Now,

ρðfnþ1 � pÞ ¼ ρ½ð1� αnÞun þ αnvn � p�
¼ ρ½ðun � pÞ þ αnðvn � unÞ�:

(3.44)

Using Lemma 2.2 and (3.44), we have

K ¼ lim inf
n→∞

ρðfnþ1 � pÞ ¼ lim inf
n→∞

ρ½ðun � pÞ þ αnðvn � unÞ�
¼ lim inf

n→∞
ρðun � pÞ: (3.45)

This means that

K ¼ lim inf
n→∞

ρðun � pÞ: (3.46)

Using (3.35) and (3.46), we have

lim
n→∞

ρðun � pÞ ¼ K: (3.47)

Using (3.43), we have

lim inf
n→∞

ρðun � pÞ ¼ lim inf
n→∞

ρ½ðun � vnÞ þ ðvn � pÞ� ¼ lim inf
n→∞

ρðvn � pÞ: (3.48)

But

ρðvn � pÞ≤HρðPT
ρ ðgnÞ;PT

ρ ðpÞÞ≤ ρðgn � pÞ: (3.49)

Hence,

lim inf
n→∞

ρðvn � pÞ≤ lim inf
n→∞

ρðgn � pÞ: (3.50)

By (3.41), we have

K ≤ lim inf
n→∞

ρðgn � pÞ: (3.51)

From (3.41) and (3.51), we have

lim
n→∞

ρðgn � pÞ ¼ K: (3.52)

Since

lim
n→∞

ρðgn � pÞ ¼ lim
n→∞

ρ½ð1� βnÞfn þ βnun � p�
¼ lim

n→∞
ρ½ð1� βnÞðfn � pÞ þ βnðun � pÞ� ¼ K:

(3.53)

Using (3.31), (3.35) and Lemma 2.3, we have

lim
n→∞

ρðfn � unÞ ¼ 0: (3.54)

Hence,

lim
n→∞

distρ
�
fn;P

T
ρ ðfnÞ

� ¼ 0: (3.55)

The proof of Theorem 3.2 is completed. ,
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Theorem 3.3. Let ρ satisfy ðUUC1Þ and Δ2-condition. Let D be a nonempty ρ-compact,

ρ-bounded and convex subset of Lρ. Let T : D→PρðDÞ be a multivalued mapping such that PT
ρ

is a ρ-quasi-contractive mapping, satisfying contractive condition (2.4) and FρðTÞ≠ 0=. Let
ffng⊂D be defined by the two step S-iterative process (2.6) and f0 ∈D, where the sequences
fαng,fβng⊂ ð0; 1Þare bounded away from both 0 and 1. Then ffngρ -converges to a fixed point
of T.

Proof. Using relation (2.4) with f ¼ q, g ¼ fnk and the fact that 0≤ δ < 1. Since D is
ρ-compact, there exists a subsequence ffnkg of ffng such that limn→∞ðfnk– qÞ ¼ 0 for some

q∈D. Next, we show that q is a fixed point ofT. Suppose t is an arbitrary point in PT
ρ ðqÞ and

f ∈PT
ρ ðfnkÞ. Observe that

ρ
�
q� t

3

�
¼ ρ
�
q� fnk

3
þ fnk � f

3
þ f � t

3

�

≤
1

3
ρ
�
q� fnk

�þ 1

3
ρðfnk � f Þ þ 1

3
ρðf � tÞ

≤ ρ
�
q� fnk

�þ distρ
�
fnk;P

T
ρ

�
fnk
��þ distρ

�
PT
ρ ðfnk

�
; tÞ

≤ ρ
�
q� fnk

�þ distρ
�
fnk;P

T
ρ ðfnk

��þ Hρ

�
PT
ρ ðfnk

�
;PT

ρ ðqÞÞ

≤ ρ
�
q� fnk

�þ distρ
�
fnk;P

T
ρ ðfnk

��þ δρ
�
q� fnk

�
≤ ρ
�
q� fnk

�þ distρ
�
fnk;P

T
ρ ðfnk

��þ ρ
�
q� fnk

�
:

(3.56)

By Theorem 3.2, we obtain limn→∞distρðfn;PT
ρ ðfnÞÞ ¼ 0. So that ρ

�
q− t
3

� ¼ 0. Therefore, q is a

fixed point of PT
ρ . By Lemma 2.4, we see that the set of fixed points of PT

ρ is the same as that of

T, hence, we have that ffng ρ-converges to a fixed point of T. The proof of Theorem 3.3 is
completed. ,

Theorem 3.4. Let ρ satisfy ðUUC1Þ and Δ2-condition. Let D be a nonempty ρ-closed,
ρ-bounded and convex subset of Lρ. Let T : D→PρðDÞ be a multivalued mapping satisfying

condition (I) such that PT
ρ is a ρ-quasi-contractivemapping, satisfying contractive condition (2.4)

and FρðTÞ≠ 0=. Let ffng⊂Dbe defined by the two step S-iterative process (2.6) and f0 ∈D, where
the sequences fαng,fβng⊂ ð0; 1Þ are bounded away from both 0 and 1. Then ffng ρ-converges
to a fixed point of T.

Proof. The proof of Theorem 3.4 is similar to the proof of Theorem 3 of Khan and Abbas
[12]. ,

4. ρ-Stability of fixed point iterations in modular function spaces
In this section, we define the concepts of ρ-T -stable, ρ-almost T -stable and ρ-summably
almost T -stable in modular function spaces. We prove that some fixed point iterative
processes are ρ-summably almost T -stable with respect to T, where T is a multivalued
ρ-quasi-contractive mapping in modular function spaces.

Let ρ satisfy ðUUC1Þ and D a nonempty ρ-closed, ρ-bounded and convex subset of Lρ. Let
T : D→PρðDÞ be a mapping with FρðTÞ≠ 0=. Suppose that ffng∞n¼0 is a fixed point iterative
process, i.e. a sequence ffng∞n¼0 defined by f0 ∈D and (4.1)
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fnþ1 ¼ FðT; fnÞ; n ¼ 0; 1; 2; 3; . . . ; (4.1)

where F is a given function.
Several fixed point iterations exist in literature. For instance, Mann iteration, with

FðT; fnÞ ¼ ð1− αnÞfn þ αnTfn, where fαng⊂ ½0; 1� such that fαng is bounded away from
both 0 and 1. The Ishikawa iteration, with FðT; fnÞ ¼ ð1− αnÞfn þ αnT½ð1− βnÞfn þ βnTfn�,
such that fαng∞n¼0; fβng∞n¼0 ⊂ ½0; 1� are both bounded away from both 0 and 1.

Let ffng∞n¼0 converge strongly to some p∈FρðTÞ. In practice, we compute ffng∞n¼0 as
follows:

(i) Choose the initial guess (approximation) f0 ∈D;

(ii) Compute f1 ¼ FðT; f0Þ. However, as a result of various errors that occur during
computations (numerical approximations of functions, rounding errors, derivatives,
integration, etc.), we do not obtain the exact value of f1, but a different one, say , which is
close enough to f1, this means that h1 ≈ f1;

(iii) Therefore, during the computation of f2 ¼ FðT; f1Þwe have

f2 ¼ FðT; h1Þ: (4.2)

This means that instead of the theoretical value of f2, we expect another value h2 will be
obtained, and h2 being close enough to f2, i.e. h2 ≈ f2, and so on.

Continuing this process, we see that instead of the theoretical sequence ffng∞n¼0 defined by
the fixed point iteration (4.1), we obtain practically an approximate sequence fhng∞n¼0.

The fixed point iteration (4.1) is considered to be numerically stable if and only if for hn
close enough to fn at each stage, we have that the approximate fhng∞n¼0 still converges to the
fixed point p of FρðTÞ.

Next, we give the following definition, which is the analogue of the concept of T -stability
introduced by Harder and Hicks (see, [7,8]) in modular function spaces.

Definition 4.1. Let ρ satisfy ðUUC1Þ and D a nonempty ρ-closed, ρ-bounded and convex
subset of Lρ. Let T : D→PρðDÞ be a mapping with FρðTÞ≠ 0=. Suppose that the fixed point
iterative process (4.1) converges to a fixed point p of T. Let fhng∞n¼0 be an arbitrary sequence
in D and set

εn ¼ ρðhnþ1 � FðT; hnÞÞ; n ¼ 0; 1; 2; 3; . . . (4.3)

The fixed point iterative process (4.1) is said to be ρ-T -stable, or ρ-stable or ρ-stable with respect
to T if and only if

lim
n→∞

εn ¼ 00 lim
n→∞

hn ¼ p: (4.4)

Definition 4.2. Let ρ satisfy ðUUC1Þ and D a nonempty ρ-closed, ρ-bounded and convex
subset of Lρ. Let T : D→PρðDÞ be a mapping with FρðTÞ≠ 0=. Suppose that the fixed point
iterative process (4.1) converges to a fixed point p of T. Let fhng∞n¼0 be an arbitrary sequence
in D and let fεng∞n¼0 be defined by (4.3). The fixed point iterative process (4.1) is said to be
ρ-almost T-stable or ρ-almost stable with respect to T if and only ifX∞

n¼0

εn < ∞0 lim
x→∞

hn ¼ p: (4.5)
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Remark4.1. It is clear from the definitions that any ρ-stable fixed point iteration ffng is also
ρ-almost stable.

A sharper concept of almost stability was introduced by Berinde [4]. He showed some
almost stable fixed point iterations which are also summably almost stable with respect to
some classes of contractive operators. We next define the analogue of this concept in modular
function spaces.

Definition 4.3. Let ρ satisfy ðUUC1Þ and D a nonempty ρ-closed, ρ-bounded and convex
subset of Lρ. LetT : D→PρðDÞbe a mapping with FρðTÞ≠ 0=. Suppose that the fixed point
iterative process (4.1) converges to a fixed point p of T. Let fhng∞n¼0 be an arbitrary
sequence in D and let fεng∞n¼0 be defined by (4.3). The fixed point iterative process (4.1) is
said to be ρ-summably almost T-stable or ρ-summably almost stable with respect to T if and
only if X∞

n¼0

εn < ∞0
X∞
n¼0

ρðhn � pÞ < ∞: (4.6)

Remark 4.2. Clearly, any fixed point iteration ffng that is ρ-almost stable is also
ρ-summably almost stable, sinceX∞

n¼0

ρðhn � pÞ < ∞0 lim
n→∞

hn ¼ p:

However, we show that the converse is generally not true (see Example 4.1 below).

Example 4.1. Let the real number system ℝ be the space modulared as follows:

ρðf Þ ¼ jf jk; k≥ 1:

LetD ¼ ff ∈Lρ : 0≤ f ðxÞ≤ 1g. LetT : D→PρðDÞbe amultivaluedmapping such thatPT
ρ is

ρ-nonexpansive satisfying Tf ¼ f . Let ffng be the Picard iteration. Then ffng is not
ρ-summably almost T -stable.

Clearly, D is a nonempty ρ-compact, ρ-bounded and convex subset of Lρ ¼ ℝ which
satisfies UC1 condition. Moreover, ρðf Þ ¼ jf jk, k≥ 1 is homogeneous and it is of degree k,
hence by Proposition 2.1 ðUUC1Þ hold. Clearly, FρðTÞ ¼ ½0; 1�. Suppose p ¼ 0. Take hn ¼ 1

n
,

for each n≥ 1. Hence, limn→∞hn ¼ 0, we see that

εn ¼ ρðhnþ1 � FðT; hnÞÞ ¼ distρ

�
1

nþ 1
;
1

n

�

¼
���� 1

nþ 1
� 1

n

����
k

¼
���� 1

nðnþ 1Þ
���� ¼ 1

nðnþ 1Þ :

Hence,
P∞

n¼0εn < ∞.
However, we have

X∞
n¼0

ρðhn � pÞ ¼
X∞
n¼0

distρ

�
1

n
; 0

�
¼
X∞
n¼0

����1n� 0

����
k

¼
X∞
n¼0

����1n
���� ¼X∞

n¼0

1

n
¼ ∞:

This means that the Picard iteration ffng is not ρ-summably almost T -stable.
It is known that the Picard iteration is not T -stable and hence not almost T -stable (see,

e.g. [4]).
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Next, we prove the following results.

Theorem 4.1. Let ρ satisfyðUUC1Þ and Δ2-condition. Let D be a ρ-closed, ρ-bounded and
convex subset of a ρ-complete modular space Lρ and T : D→PρðDÞ be a multivalued mapping

such that PT
ρ is a ρ-quasi-contractive mapping, satisfying contractive condition (2.4) and

FρðTÞ≠ 0=. Let ffng⊂D be defined by the two step S-iterative process as follows

8<
:

f0 ∈D

fnþ1 ¼ ð1� αnÞun þ αnvn
gn ¼ ð1� βnÞfn þ βnun;

(4.7)

where un ∈PT
ρ ðfnÞ,vn ∈PT

ρ ðgnÞ, the sequencesfαng; fβng⊂ ð0; 1Þ are bounded away from both

0 and 1. Then ffng is ρ -summably almost stable with respect to T.

Proof. Suppose p∈FρðTÞ and fhng is an arbitrary sequence. Define

�
sn ¼ ð1� βnÞhn þ βnwn;
εn ¼ ρðhnþ1 � ð1� αnÞwn � αnznÞ; (4.8)

where wn ∈PT
ρ ðhnÞ, zn ∈PT

ρ ðsnÞ, the sequences fαng; fβng⊂ ð0; 1Þ are bounded away from
both 0 and 1.

Using the convexity of ρ, we have the following estimates:

ρðhnþ1 � pÞ ¼ ρðhnþ1 � ð1� αnÞwn � αnzn þ ð1� αnÞðwn � pÞ þ αnðzn � pÞÞ
≤ εn þ ð1� αnÞρðwn � pÞ þ αnρðzn � pÞ
≤ εn þ ð1� αnÞHρðPT

ρ ðhnÞ;PT
ρ ðpÞÞ þ αnHρðPT

ρ ðsnÞ;PT
ρ ðpÞÞ:

(4.9)

Using (4.9), relation (2.4) with f ¼ p, g ¼ hn and also f ¼ p, g ¼ sn, we have

ρðhnþ1 � pÞ≤ εn þ ð1� αnÞδρðhn � pÞ þ αnδρðsn � pÞ: (4.10)

Next, by convexity of ρwe have

ρðsn � pÞ ¼ ρðð1� βnÞhn þ βnwn � pÞ
≤ ð1� βnÞρðhn � pÞ þ βnHρðPT

ρ ðhnÞ;PT
ρ ðpÞ

�
≤ ð1� βnÞρðhn � pÞ þ βnδρðhn � pÞ
≤ ð1� βnÞρðhn � pÞ þ βnρðhn � pÞ
¼ ρðhn � pÞ:

(4.11)

Using (4.11) in (4.10), we obtain

ρðhnþ1 � pÞ≤ εn þ ð1� αnÞδρðhn � pÞ þ αnδρðhn � pÞ
¼ εn þ δρðhn � pÞ: (4.12)

By Lemma 2.5, we have that the two step S-iteration (4.7) is ρ-summably almost stable with
respect to T. The proof of Theorem 4.1 is completed. ,
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Theorem 4.2. Let ρ satisfyðUUC1Þ and Δ2-condition. Let D be a ρ-closed, ρ-bounded and
convex subset of a ρ-complete modular space Lρ and T : D→PρðDÞ be a multivalued mapping

such that PT
ρ is a ρ-quasi-contractive mapping, satisfying contractive condition (2.4) and

FρðTÞ≠ 0=. Let ffng⊂D be defined by the following iterative process

(
f0 ∈D

fnþ1 ∈PT
ρ ðunÞ

(4.13)

where un ∈PT
ρ ðfnÞ. Then ffng is ρ -summably almost stable with respect to T.

Proof. Let p∈FρðTÞ and fhng be an arbitrary sequence. Define

εn ¼ ρðhnþ1 �mnÞ; (4.14)

wheremn ∈PT
ρ ðhnÞ. Using (4.13), (4.14), relation (2.4) with f ¼ p, g ¼ hn and the convexity of ρ,

we have the following estimate:

ρðhnþ1 � pÞ ¼ ρðhnþ1 �mn þmn � pÞ
≤ ρðhnþ1 �mnÞ þ ρðmn � pÞ
≤ εn þ HρðPT

ρ ðhnÞ;PT
ρ ðpÞÞ

≤ εn þ δρðhn � pÞ:

(4.15)

By Lemma 2.5, it follows that the fixed point iteration (4.13) is ρ-summably almost stable with
respect to T. The proof of Theorem 4.2 is completed. ,

Theorem 4.3. Let ρ satisfy ðUUC1Þ and Δ2-condition. Let D be a ρ-closed, ρ-bounded and
convex subset of a ρ-complete modular space Lρ and T : D→PρðDÞ be a multivalued

mapping such that PT
ρ is a ρ-quasi-contractive mapping, satisfying contractive condition

(2.4) and FρðTÞ≠ 0=. Let ffng⊂D be defined by the two step S-iterative process as
follows 8>><

>>:
f0 ∈D

fnþ1 ∈
Xk
i¼0

αiu
i
n; n≥ 0; αi ≥ 0; α1 > 0;

Xk
i¼0

αi ¼ 1:
(4.16)

where uin ∈PTi

ρ ðfnÞ. Then ffng is ρ-summably almost stable with respect to T.

Proof. Let p∈FρðTÞ and fhng be any given sequence in D and define

εn ¼ ρ

 
hnþ1 �

Xk
i¼0

αiz
i
n

!
; (4.17)

where zin ∈PTi

ρ ðhnÞ. Using (4.16), (4.17), relation (2.4) with f ¼ p, g ¼ hn and the convexity of ρ,
we have the following estimate:
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ρðhnþ1 � pÞ ¼ ρ

 
hnþ1 �

Xk
i¼0

αiz
i
n þ

Xk
i¼0

αiz
i
n � p

!

≤ ρ

 
hnþ1 �

Xk
i¼0

αiz
i
n

!
þ ρ

 Xk
i¼0

αiz
i
n � p

!

≤ εn þ ρ

 Xk
i¼0

αiz
i
n � p

!

≤ εn þ Hρ

 Xk
i¼0

αiP
Ti

ρ ðhnÞ;PT
ρ ðpÞ

!

≤ εn þ
Xk
i¼0

αiHρðPTi

ρ ðhnÞ;PT
ρ ðpÞ

	

≤ εn þ
 Xk

i¼0

αiδ
i

!
ρðhn � pÞ

¼ εn þ qρðhn � pÞ;

(4.18)

where q ¼Pk

i¼0αiδ
i < 1. Hence, by Lemma 2.5 it follows that the fixed point iteration (4.16) is

ρ-summably almost stable with respect to T. The proof of Theorem 4.3 is completed. ,
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