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Abstract
The evolution of technologies has unleashed a wealth of challenges by generating massive amount of data.
Recently, biological data has increased exponentially,which has introduced several computational challenges. DNA
short read alignment is an important problem in bioinformatics. The exponential growth in the number of short
reads has increased the need for an ideal platform to accelerate the alignment process. Apache Spark is a cluster-
computing framework that involves data parallelism and fault tolerance. In this article, we proposed a Spark-based
algorithm to accelerate DNA short reads alignment problem, and it is called Spark-DNAligning. Spark-DNAligning
exploitsApache Spark ’s performance optimizations such as broadcast variable, join after partitioning, caching, and
in-memory computations. Spark-DNAligning is evaluated in termof performance by comparing it with SparkBWA
tool and a MapReduce based algorithm called CloudBurst. All the experiments are conducted on Amazon Web
Services (AWS). Results demonstrate that Spark-DNAligning outperforms both tools by providing a speedup in the
range of 101–702 in aligning gigabytes of short reads to the human genome. Empirical evaluation reveals that
Apache Spark offers promising solutions to DNA short reads alignment problem.
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1. Introduction
Bioinformatics is an emerging field with applications in protein structure prediction,
sequence alignment, drug design, gene finding and more. Within the recent years, biological
data volume has increased enormously. Bioinformatics uses computational tools and
applications to organize and analyze the massive amount of data sets that are produced from
high-throughput biological studies. Thus, bioinformatics combined with math, computer
science, and statistics helps to develop algorithms that solve practical problems formanaging
and analyzing vast amounts of biological data.

Discovered by two biologists, James Watson and Francis Crick in 1953, deoxyribonucleic
acid (DNA) is the blueprint of life as it encodes genetic instructions [1]. Two twisted paired
strands construct the DNA, each strand consisting of a sequence of four nucleotide base:
adenine (A), cytosine (C), guanine (G), and thymine (T) [2]. Within the nucleus of living cells,

ACI
19,1/2

64

© Maryam AlJame and Imtiaz Ahmad. Published in Applied Computing and Informatics. Published by
Emerald PublishingLimited.This article is published under the Creative CommonsAttribution (CCBY4.0)
license. Anyone may reproduce, distribute, translate and create derivative works of this article (for both
commercial and non-commercial purposes), subject to full attribution to the original publication and
authors. The full terms of this license may be seen at http://creativecommons.org/licences/by/4.0/legalcode

The authors would like to thank unanimous reviewers for their valuable comments and suggestions in
improving the quality of the article. Thanks are also extended to Dr. Paul Karlsrud for his immense help in
running the SparkBWA tool.

Publishers note: The publisher wishes to inform readers that the article “DNA short read alignment on
apache spark” was originally published by the previous publisher of Applied Computing and Informatics
and the pagination of this article has been subsequently changed. There has been no change to the content
of the article. This changewasnecessary for the journal to transition from the previouspublisher to the new
one. The publisher sincerely apologises for any inconvenience caused. To access and cite this article, please
use Aljame, M., Ahmad, I. (2019) “DNA short read alignment on apache spark”, Applied Computing and
Informatics. Vol. ahead-of-print No. ahead-of-print. https://10.1016/j.aci.2019.04.002. The original
publication date for this paper was 26/04/2019.

The current issue and full text archive of this journal is available on Emerald Insight at:

https://www.emerald.com/insight/2210-8327.htm

Received 6 February 2019
Revised 19 April 2019
Accepted 24 April 2019

Applied Computing and
Informatics
Vol. 19 No. 1/2, 2023
pp. 64-81
Emerald Publishing Limited
e-ISSN: 2210-8327
p-ISSN: 2634-1964
DOI 10.1016/j.aci.2019.04.002

http://creativecommons.org/licences/by/4.0/legalcode
https://10.1016/j.aci.2019.04.002
https://doi.org/10.1016/j.aci.2019.04.002


there are chromosomes that packaged the DNA. In a nucleus, the collection of DNA of all
chromosomes is defined as genome.

Sequencing techniques are used by biologists to study the genomic sequence. One of the
sequencing techniques is Next Generation Sequencing (NGS). In a single run, NGS can
generate terabytes of data, this increased in throughput has exceededMoore’s Law [3]. Recent
experiments have shown that the NGS’s throughput is increasing 3-5x every year [4]. Short
reads are obtained from NGS experiments. Mapping short reads to a long reference genome
with a minimum number of mismatches is a challenge which brings forth a problem called
short reads alignment. Such type of mapping is a computationally expensive operation since
it requires matching a huge amount of short reads across an immense reference genome [5].
Next Generation Sequencing technique introduces advanced challenges in short reads
alignment [6]. Numerous tools and algorithms have been developed to overcome NGS
computational challenges and hurdles. Such tools and algorithms battle to improve accuracy,
increase mapped read rate and better memory usage by decreasing memory consumption
whilst increasing throughput [2]. Mainly, hash tables method and Burrows-Wheeler
Transform (BWT) alignment are the most common algorithms used to solve the short reads
alignment problem. BWT alignment is based on FM-index. Both hash tables and BWT are
implemented on different parallel platforms to achieve hardware acceleration. Some of the
parallel platforms are Graphics Processing Units (GPUs), multi-processors, and specialized
acceleration devices such as Field Programmable Gate Arrays (FPGAs).

BWT has been implemented on a few hardware platforms. On the flipside, several
software tools based on BWT have been developed to solve NGS reads alignment problem,
such as Burrows-Wheeler Alignment (BWA) [7]. The development of BWA-mem [8] is meant
to overcome the difficulty faced by the BWA tool in regards to gaps and indels challenges.
Moreover, Bowtie [9] uses FM-index search while its subsequent Bowtie2 [10] uses dynamic
programming to add the ability to count gaps. Further, a key implementation in parallel
platform is SparkBWA [11] which is an example of BWA on Apache Spark.

Hash tables method has been used widely in read alignment tools and has been
implemented in both software tools and on different hardware platforms. Software tools
include: The Basic Local Alignment Search Tool (BLAST) [12], RMAP [13], SeqMap [14],
CloudBurst [15] which is a distributed RMAP version, etc. It is worth mentioning that
CloudBurst is based on the parallel platform Apache Hadoop.

Though NGS throughput is growing rapidly in addition to all the above mentioned
implementations, biologists still need solutions with performance optimizations including
accelerating short reads alignment process and an ability to run it efficiently with less
power consumption and less memory utilization. To accomplish such performance
optimizations, in this article, Apache Spark has been used to solve DNA short read
alignment problem. Apache Spark is a promising cluster-computing framework that
introduces Resilient Distributed Datasets (RDDs) which have data parallelism and fault
tolerance implicitly. In this article, an algorithm based on Apache Spark, called Spark-
DNAligning, has been developed and tested to effectively solve the DNA short read
alignment problem. Spark-DNAligning results demonstrate the benefits of utilizingApache
Spark as it improves performance, in comparison to SparkBWA and one of Apache Hadoop
implementations, CloudBurst.

The remainder of the article is organized as follows: Section 2 discusses problem
formulation and presents the related work. The architecture of Apache Spark platform is
described in Section 3. Section 4 gives an overview of Spark-DNAligning, a novel Spark
algorithm to deal with DNA short read alignment. The experiments conducted and the
performance evaluation results of the proposed algorithm are reported in Section 5. Finally,
conclusions are described in Section 6.
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2. Problem formulation and related work
The current section consists of two subsections. The first subsection describes DNA short
read alignment problem and gives a brief history of it. The second subsection provides an
overview of the related work on different parallel platforms.

2.1 DNA short read problem formulation
Next-generation sequencing (NGS), also known as high-throughput sequencing, is a term
used to describe several sequencing technologies namely Illumina (Solexa), Roche 454, Ion
torrent Proton/PGM, and SOLiD. Such recent sequencing technologies accelerate DNA and
RNA sequencing. 1000 Genomes Project is an example of Next-generation DNA sequencing
(NGS) project [16]. NGS projects have brought forth a new revolution as they have among
other aspects, increased the capability to understand genetic variation among individuals,
and have helped to characterize cancers at the genomic level. For instance, biologists and
health care providers need DNA sequencing technologies in several applications including
finding pathogenic genes, molecular cloning, and breeding [17]. To serve the intended
purpose, DNA sequencing technologies should have various critical characteristics such as
accurate, easy of use and fast execution time. As an example, Figure 1 illustrates Whole-
genome sequencing (WGS) workflow. The first step is the sequencing step where a sequencer
sequences the human genome by fragmenting it into numerous short chunks named short
reads [18]. The sequencing step generates plenty of short reads, almost billions in number. In
particular, sequencers generate lengthy short reads ranging between 100 and 500 bp [19]. As
shown in Figure 1, the next step is aligning all the short reads to a reference genome [18].
Some short reads will bematched exactly to the reference genomewhile other short reads will
have some mismatches. For example, the short read “GGTCTGGATGC” will be aligned to
index three with one mismatch. It is clearly illustrated in Figure 1 where the mismatch has a
bold character, seen in the character “G” as it should be “A”.

The main concerns in DNA short read alignment problem are execution time andmemory
usage. Fortunately, the two concerns can be handled effectively on parallel platforms such as
Apache Hadoop, Apache Spark, GPU based implementations, as well as using Field
Programmable Gate Arrays (FPGAs) device. Recent studies assert that parallel platforms are
promising solutions for DNA short read alignment problem.

2.2 Related work
Recently, in bioinformatics, cloud computing and parallel platforms are considered new
emerging promising solutions to handle critical issues such as computation and memory
footprint [20]. MapReduce is a computing framework developed by Google whose execution
is parallel on a large cluster of commodity machines in a significantly scalable manner [21].
MapReduce is available on different implementations such as Phoenix, Hadoop, Mars and

Figure 1.
Whole-genome
sequencing workflow.
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many others [22]. MapReduce has been the key framework for many emerging tools in
bioinformatics such as CloudAligner [22], CloudBurst [15], Crossbow [23], and SeqMapreduce
[24]. CloudBurst is a parallel seed-and-extend read-mapping algorithm developed based on
HadoopMapReduce implementation. CloudBurst boasts of several added enhancements. The
essential one is near linear parallel speedup which implies that CloudBurst running time
scales linearly according to reads number [15]. Though it possesses various strong features
as seen, CloudBurst is not without limitations. For example, because input files are in FASTA
format, CloudBurst does not supportmany common formats in bioinformatics as FASTQ [25]
format. In addition, in a study undertaken by Schatz (2009), another limitation reported is the
failure to align 7 M reads with four mismatches to the human genome, reporting near 25
billion aligns before stopping due to lack of memory. SeqMapReduce is another Hadoop
MapReduce mapping sequences tool. The main advantage SeqMapReduce has over
CloudBurst is in-memory seed-and-extension and a late emission strategy [24]. Hence, the
overall performance is improved by reducing the need to store the intermediate key/value
pairs on the cluster as well as the reduction of communications overhead [24]. Furthermore,
Crossbow uses HadoopMapReduce to build a parallel cloud-computing tool that explores the
benefits of Bowtie [23] and SNP caller SOAPsnp [7] in terms of speed and accuracy,
respectively. CloudAligner is a Hadoop-based sequence alignment tool developed by Tung
Nguyen et al. [22]. It has a parallel processing and it partitions the reference genome and reads
in a way that improves performance. CloudAligner is highly scalable and has the ability to
run longer reads in comparison to other existing tools, in addition to its support for many
different input/output file formats. Furthermore, there are various Burrows-Wheeler aligner
based tools that utilize Hadoop MapReduce implementations to enhance BWA performance.
For example, Halvade [26], SEAL [27], and BigBWA [28]. BigBWA is a sequence alignment
tool based on the original BWA source code, which means that BigBWA will be compatible
with BWA updated versions. All BigBWA characteristics can also be found in SparkBWA
[11]. The major difference is that instead of Hadoop, SparkBWA is based on Apache Spark.
SparkBWA uses Java Native Interface (JNI) to call all BWA methods. Also, SparkBWA
supports all BWA algorithms; BWA-backtrack [7], BWA-SW [29] and BWA-MEM [8].
StreamBWA is a Spark-based sequence aligning tool that explores Spark streaming to
process the input data in real time on a cluster [30]. Unlike SparkBWA, StreamBWA just
supports BWA-MEM algorithm. To enhance and boost other problems in Bioinformatics,
there has been the development of many Spark-based tools as reported by Li et al. [31]
includingMetaSpark [32] and Sparkga [33]. Further, the survey [34] lists several Spark based
applications and algorithms used in Bioinformatics field such as alignment, mapping,
assembly, sequence analysis, drug discovery, and others.

3. Apache spark fundamentals
This section provides a background knowledge of Apache Spark and its fundamentals. It is
organized as follows: the first subsection provides an overview of Apache Spark
fundamentals. The second subsection discusses Spark programming model.

3.1 An overview of apache spark fundamentals
In the last decade, cluster computing frameworks have gained popularity as they provide
impressive solutions to process big data. MapReduce [21] and Dryad [35] in particular are
cluster computing frameworks that have been widely used to speedup parallel
computations. One limitation though is that they are inefficient for reusing intermediate
results among several computations. Reusing intermediate results is an important step in
many algorithms such as machine learning algorithms and graph algorithms [36]. The
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mentioned algorithms have emerging applications like K-means clustering, PageRank,
and logistic regression. In fact, iterative algorithms and interactive data mining tools
require in-memory computations to run efficiently. The two types of applications have
motivated Spark’s RDDs idea [37]. Apache Spark is an emerging cluster computing
framework that proposes a novel distributed memory abstraction called Resilient
Distributed Datasets (RDDs). Spark pipelines processing of tasks depicted by Directed
Acyclic Graph (DAG) is extended from a bipartite MapReduce paradigm. RDDs empower
Spark to outperform the prior cluster computing frameworks as RDDs support in-memory
computations without the need to replicate data. Consequently, querying data in Spark is
faster than Hadoop which is a disk-based engine. Certainly, by comparing Spark with the
traditional Hadoop, the main speed gain is the way Spark handles intermediate
computations [37]. First, Spark reads data from a distributed storage system. Then,
Spark caches the data on local RAMs as persisted RDDs. To that effect, Spark uses RAMs
effectively to hold intermediate computations results thereby efficiently improving
performance by reducing overheads significantly. As shown in Figure 2, an additional
feature is that Spark core provides task scheduling, memory management, basic I/O
functionalities and fault recovery, services which can be exposed through all the
supported APIs. Spark demands two requirements; a cluster manager and a distributed
storage system. Currently, Spark supports three different cluster managers namely
Standalone, Apache Mesos [38] and Hadoop YARN [39].

Figure 2.
Apache Spark software
system core
architecture.

Figure 3.
Spark architecture.
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Spark is built based on a master/slave architecture where it has one master referred to as a
driver program and various executors (workers) as depicted in Figure 3. The driver program
plays important roles and aside from its main functions, it also constructs RDDswith all their
parallel operations (transformations and actions). In addition, the driver program has the
responsibility to run all the said parallel operations on a cluster [37].

3.2 Spark programming model
Todevelop a Spark application, developers implement Spark application flow control on a high-
level by writing a driver program [40]. In Spark, a driver program is written in Scala. Scala
programming language is a functional programming language that is statically typed for the
Java VM. In addition, other functional programming languages including Java, Python and R
can also be used towrite a Sparkdriver program.Operations in Spark applications are executed
in parallel. In Spark, parallel programming is available in two fundamental abstractions:
Resilient Distributed Datasets (RDDs), and parallel operations which are applied on RDDs [40].
A resilient distributed dataset (RDD) is one of the fundamental abstraction in Spark parallel
programming. An RDD is an immutable collection of objects that is partitioned across all
machines in the cluster and performs in-memory computations [36]. RDDs in Spark possess
distributed shared memory advantages without latency issues [37]. Operations on RDDs are
based on coarse-grained transformations and as a consequence, the same operation is applied to
several data items at the same time. There are numerous parallel operations such as map, filer,
join, reduce, and collect among others. Mainly operations on RDDs are of two types;
transformations and actions. Transformations are lazily evaluated. Afterward, the
transformation operations execute only when an action operation is triggered.

Spark operations are invoked by passing closures to them. As a functional programming
concept, closures can access variables within closures’ scope. As a rule, closure’s needed
variables are copied to the worker node. In some cases, that copy consumes a huge amount of
resources in regards to memory and network traffic. To overcome such limitations, Spark
offers two kinds of shared variables; Broadcast variables and Accumulators variables.
Broadcast variables are read-only variables which are distributed and copied to the workers’
nodes only once. Consequently, broadcast variables are very useful and helpful in a situation
where multiple parallel operations need to use the same data without modifying it. In
particular, a lookup table is commonly used as a broadcast variable.

In Apache Spark RDDs dependency occurs between parent RDD partitions and its child
RDD partitions. There are two types of RDDs dependency; narrow dependency and wide
dependency. Narrow dependency means each partition in the child RDD depends on at most
one partition in the parent RDD. Wide dependency, on the other hand, means that each
partition in the child RDD depends on several partitions in the parent RDD. In light of such
facts, narrow dependency then becomes more effective than wide dependency.

4. Proposed algorithm
Spark-DNAligning algorithm is a newDNA short read alignment algorithm developed based
on Apache Spark. This section provides a detailed explanation of the proposed algorithm
referred to as the Spark-DNAligning algorithm. The first subsection gives an overview of the
Spark-DNAligning workflow. The next subsection demonstrates Spark-DNAligning
Algorithm Design.

4.1 Workflow of the proposed algorithm
This subsection explains the workflow of the proposed algorithm. Figure 4 depicts Spark-
DNAligning Algorithm workflow. As shown, there are three main steps: (1) Indexing the
reference genome, (2) DNA short reads preparation, and (3) Aligning. Almost all short reads
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alignment algorithms index the reference genome to speedup aligning steps. Each algorithm
has its own way of indexing the reference genome or it simply loads the available index files
that have been previously generated. Spark-DNAligning explores many Spark features to
implement its own reference genome indexing steps. In Figure 4, the left side illustrates the
indexing steps. First, Spark’s parallelize method needs two inputs: (1) List of range starting
from zero to DNA reference length, and (2) Reference genome broadcast variable. Figure 5a
displays the indexing steps using a simple example. Assuming that the reference genome is
“ACCTGAG”, the List starts from zero up to n-1 where n is length of the reference genome.
Thus, in the example, the List starts from zero up to 6. The map output represents the
reference genome indexes. In Figure 5a for instance, index zero is represented by the pair
(ACC, 0) which means the DNA segment “ACC” is located at index zero in the reference
genome. More details regarding that are provided later. SortByKey sorts the pairs
alphabetically in ascending order based on keys. Afterward, filterByRange in the given
example in Figure 5a filters all pairs that start will (A) nitrogen base. The same filter is applied
to the rest of DNA nitrogen bases C, G, and T.

DNA short reads preparation steps are shown on the right side of Figure 4. The first step is
loading DNA short reads from a file by calling textFile Spark method. Figure 5b
demonstrates a simple example with five DNA short read records. Each read has a length of

Figure 4.
Spark-DNAligning
algorithm workflow.
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three characters. As shown in Figure 5b, map output is a pair RDD of (DNA_read,
DNA_read_ID). Afterwards, sortByKey and filterByRange work similar to indexing steps.
Thus, as depicted in Figure 5b, the filterByRange output is two pairs (AAA, 5) and (ACC, 3) as
in the example, filter is for (A) nitrogen base. The next step is aligning which is done by
applying Spark’s joinmethod to the previously generated two RDDs is illustrated in Figure 6.
In the given example, join output is (ACC, (3, 0)). It implies the short read “ACC” with ID 3 is
located at index zero in the reference genome. Indeed, there is no need for the segment ACC
because Spark-DNAligning users are able to identify it from DNA_read_ID which is 3 in the
given example. Spark-DNAligning applies map transformation to omit DNA segment from

Figure 5.
Spark-DNAligning

algorithm.

Figure 6.
Spark-DNAligning

algorithm
aligning steps.
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all join output pairs for several reasons. Key among them is memory usage. In the final step,
results are saved.

4.2 Spark-DNAligning algorithm design
This subsection provides a detailed description of the design and implementation of Spark-
DNAligning Algorithm. The proposed algorithm accepts input files in FASTA format and
output the results as a SAM file.

Spark-DNAligning takes advantage of five key concepts in Apache Spark. The concepts
are broadcast variable, pair RDD, sortByKey, filterByRange, and join. Broadcast variables
are a valuable feature in Apache Spark as they provide a way to let all nodes (workers) in the
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cluster access the same read-only variable in a handy distributable manner that decreases
communications overhead. Apache Spark broadcast variable gains its value by means of
caching a broadcast variable on each node in the cluster instead of carrying a copy of it with
each task. Absolutely with a simple thought, in DNA short read alignment problem, all DNA
reads need to be compared with the DNA reference. Thus, DNA reference is a perfect
candidate to be a Spark broadcast variable. As shown in Algorithm 1 line 1, Spark-
DNAligningAlgorithmmakes a broadcast variable of the DNA reference after loading it from
a FASTA file. Consequently, DNA reference is available to all nodes (workers) in the cluster
with less communications overhead.

After that, in Algorithm 1 line 2, the DNA reference length is calculated. The length is used
to create a Scala collection of a range of numbers starting from zero to the DNA reference
length as it is written in line 3, in Algorithm 1. As shown in Figure 7a, the collection is
parallelized by calling SparkContext’s parallelize method to compose a distributed dataset
(indexes RDD) which executes in a parallel manner. The DNA reference indexes by applying
map transformation on the previous generated RDD (indexes RDD). As mentioned in Spark
documentation, map transformation applies a function to each dataset element then returns
the results as a new RDD. So, in the proposed algorithm, map transformation is used to create
a pair RDD of DNA segment as a key, and its location as a value (DNA_segment, location).
DNA segment is generated by calling slice Scala function on the DNA reference broadcast
variable. Slice Scala function takes two parameters: start index, and last index. It then returns
a substring which contains only the characters at the start index through the last index. The
last index of the slice function is equal to location plus short reads length in terms of the
number of base pairs (bp). For example, assuming that DNA reference is “gctattgaatc”, short
reads bp is equal to 3 and location is equal to 7. Then, DNA_segment starts from the seventh
character of the DNA reference and ends at character 10 since location plus short reads bp is
equal to 7þ3 which is equal to 10. Thus, the map iteration generates the pair element (aat, 7)
where “aat” is the DNA_segment and is located at character 7 in the DNA reference. Figure 7a
illustrates map transformation results in refIndexes RDD. The next step is to sort the key/
value pairs based on key values by calling sortByKey( ) on refIndexes RDD. The result is the
construction of a new RDD which is sortedIndexes RDD in Figure 7a.

DNA short reads are stored in Amazon S3, as illustrated in Figure 7b. RDD of the DNA
short reads is constructed by calling SparkContext’s textFile method followed by applying
map transformation to construct a pair RDD with DNA short read as a key and DNA short
read ID as a value (DNA_read, DNA_read_ID). Without a doubt, communication in a
distributed system is really expensive. Accordingly, minimizing network traffic improves
performance significantly. In Spark, to reduce communications, a developer has the option of
controlling RDD partitioning. For that purpose, Spark-DNAligning takes partitions number
as an input to enable users to tune partitions number smoothly. Apache Spark has two type of
partitioning: Hash Partitioning, and Range Partitioning. In addition, developers can create
custom partitioning to satisfy their application needs.

It is more efficient to use Range Partitioning with pair RDDs that have keys in a particular
ordering. Consequently, elements with the same range of keys appear on the same machine in
the cluster. Spark-DNAligning utilizes Range Partitioning by applying it on both refIndexes
RDD and reads RDD before calling sortByKey( ) as depicted in Algorithm 1 in line 7 and line 8.
Following that action, the resultingRDDs are persisted. On the other hand, refIndexes RDD and
reads RDD are deleted from memory by applying unpersist( ) command to them. Actually,
Spark uses least-recently-used (LRU) algorithm to delete old unused data. In Spark-DNAligning
though, instead of waiting for Spark automatic memory cleaning, Spark-DNAligning calls
unpersist( ) method manually. Such RDDs’s persistence control enhances memory usage.

DNA consists of four nitrogen bases: adenine (A), guanine (G), cytosine (C) and thymine (T).
For several benefits like memory usage and performance improvement, Spark-DNAligning
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Figure 7.
Spark-DNAligning
algorithm example.
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algorithm aligns all DNA short reads that begin with adenine (A) first followed by short reads
that begin with cytosine (C), guanine (G), and thymine (T), respectively. To achieve such
aligning, Spark-DNAligning uses Spark filterByRange transformation with Scala regular
expression.Algorithm1 shows that filterByRange is applied onboth of sortedIndexesRDDand
sortedReads RDD. Spark filterByRange transformation takes two parameters: the lower key,
and the upper key, constructing an RDD from only the elements within the given range. Spark-
DNAligning exploits Scala regular expression to specify the range to filterByRange
transformation. Regular expression helps in setting filterByRange lower key to the first read
starting with one of the nitrogen bases, and sets filterByRange upper key to the last read
starting with the same nitrogen base. Figure 8 shows adenine (A) nitrogen base case, in
sortedIndexes and sortedReads. Adenine (A) nitrogen base range starts from the first record
beginning with character A to the last record beginning with character A. In details, all records
are sorted so the range starts from records which have “AA” prefix and ends with records
which have “ATT” prefix. The same is witnessed for cytosine (C) base, guanine (G) base, and
thymine (T) base. The final phase is joining. Spark join transformation takes twopairRDDsand
merges pairs with identical keys. Figure 8 illustrates join in the Spark-DNAligning algorithm
for adenine (A) nitrogen base. As mentioned earlier, the aIndexes RDD has DNA segment as a
key while aReads RDD has DNA read as a key. As a result, joining identical keys performs the

Figure 8.
Spark-DNAligning

filterByRange and join
for adenine (A)
nitrogen base.
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alignment and produces pair RDDwithDNA_read as a key and the tuple (DNA_ID, location) as
a value.

Before saving the aligning results, Spark-DNAligning applied map transformation to
format the aligning results to SAM format. Further, the proposed algorithm used
subtractByKey( ) to get the unmapped reads as written in Algorithm 1 line 15. The final
results are saved on Amazon S3 by calling saveAsTextFile( ) Spark’s action. Moreover, a
performance improvement point to consider is join shuffling. In fact, join without co-
partitioned inputs is a wide dependency which requires shuffling while join with co-
partitioned inputs is a narrow dependency without shuffling. For that reason, Spark-
DNAligning applies HashPartitioner for both RDDs before calling join as demonstrated in
Figure 4. The partitioning dramatically improves Spark-DNAligning performance.

5. Performance evaluation
The section evaluates the proposed algorithm by comparing it with two different tools:
SparkBWA [11] and CloudBurst [15]. SparkBWA is a Burrows-Wheeler Alignment Tool
based on Apache Spark. SparkBWA includes all the three different types of BWA alignment
algorithms: BWA-backtrack, BWA-SW and BWA-MEM. CloudBurst is a Hadoop based,
read-mapping algorithm built according to the seed-and-extend algorithm. The first
subsection explains the required setups. The second subsection demonstrates all the details
of both datasets and machines that are used in the evaluation experiments. The last
subsection compares Spark-DNAligning with SparkBWA and CloudBurst in term of
execution time.

5.1 Spark-DNAligning setup
Spark-DNAligning has been evaluated on Amazon Elastic MapReduce (EMR), which utilizes
the elastic infrastructure of Amazon EC2 and Amazon S3. EMR uses Amazon S3 for data
storage, also it can use other types like AmazonDynamoDB. Amazon ElasticMapReduce has
several advantages including reliability, security, flexibility, and low cost just to name a few.
Moreover, EMR can execute many distributed frameworks such as Apache Spark, HBase,
Flink, and Presto. By default, Elastic MapReduce uses Yarn cluster manager.

5.2 Datasets description and machines details
For the experiment, Spark-DNAligning is tested in terms of performance by comparing its
execution timewith the execution time for both of SparkBWAand CloudBurst. The data used
in the testing performance experiment is retrieved from the 1000 Genomes Project [41].
Mainly, five different datasets are used in the testing experiments. The size of the first two
datasets is within the range of megabytes while that of the remaining datasets is within the
range of gigabytes. Table 1 lists the main characteristics of those input datasets.

Dataset name
Number of
short reads

Short reads
length (bp) Size Reference genome Length (bp)

100k 100,000 36 4.4MB s_suis 2,007,491
SRR001113 103,500 47 10MB Chr22 50,818,468
ERR000589 23,928,016 51 3.61GB Chr22 50,818,468
SRR062634 48,297,986 100 12.69GB Chr19 58,617,616
SRR642648 197,502,074 100 51.88GB Chr19 58,617,616

Table 1.
Datasets characteristic.
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For the first two datasets which are inmegabytes, Spark-DNAligning testing performance
experiments are ran on EMRYarn cluster with four Amazon EC2 instances, onemaster node,
and three worker nodes. Amazon EC2 instances are from general purpose family of type
m4.xlarge. The characteristics of m4.xlarge is 4 vCPU and 16 Memory (GiB). Thus, the total
number of cores in the cluster is 16 cores. On the other hand, all the gigabytes datasets the last
three rows in Table 1, are ran on EMRYarn cluster with four nodes (workers) and one master
node which places the total nodes in the cluster at five. All nodes are of type m4.16xlarge
which have the following characteristics 64 vCPU and 256 Memory (GiB). Thus, the cluster
has 320 cores in total.

In Apache Spark, it is commonly known that number of partitions affects performances
significantly. Therefore, for each dataset, Spark-DNAligning was ran using a different
number of partitions. After analyzing the effect arising from varying the number of
partitions, the best partitions number is picked for each dataset. In Apache Spark, there is no
straight rule that sets or governs the number of partitions. However, there are some
conventionswhich are commonly used inApache Spark community. Some of the conventions
are; the minimum number of partitions is equal to the number of cores in the cluster, then
multiply it by 1.5 until the performance stops improving. To that end, Spark-DNAligning has
been run on several numbers of partitions. Table 2 lists the execution time with different
number of partitions for ERR000589, SRR062634, and SRR642648. Spark-DNAligning has
been run on a cluster of 320 cores. Thus, setting number of partitions to 320 activates all cores
in the cluster and prevents them to be idle. Table 2 shows that the execution time for
ERR000589 short reads with 480 partitions is faster than 720 partitions by 13.611 s and 320
partitions by 12.106 s. For SRR642648 short reads case, the fastest execution time is reached
with 480 partitions also. On the other hand, the case of SRR062634 short reads has the fastest
execution time with 320 partitions which is 392.408 s. As illustrated in Table 2 ERR000589
with 480 partitions needs 404.636 s to complete the job. Actually, the difference between the
execution time with 320 and 480 partitions is just 12.228 s, which is a small difference.
Accordingly, Table 2 indicates that 480 partitions is the optimumnumber of partitions for the
cluster in the testing experiments.

5.3 Performance evaluation
In order to evaluate the performance of the proposed algorithm, the aforementioned five
datasets have been used to run the three tools: Spark-DNAligning, SparkBWA and
CloudBurst. After which their execution times have been analyzed and compared.
Regrettably, for the largest two datasets SparkBWA failed to complete the execution on
the current testing environment. Although, it is successfully completed the job for the two
datasets as reported [11]. However, the testing environment in [11] is bigger than the
available environment in this article. For CloudBurst cases, since it is based on Apache
Hadoop, it becomes necessary to set the proper number of mappers and reducers. In the
testing experiments, there are 3200 mappers and 640 reducers. Worth noting is that both
CloudBurst and Spark-DNAligning have a preprocessing stage. However, SparkBWA
doesn’t demand a preprocessing stage. In fact, input files are prepared in the preprocessing

Dataset name
Number of partitions

320 480 720

ERR000589 366.951 354.845 368.456
SRR062634 392.408 404.636 421.257
SRR642648 691.028 678.668 685.246

Table 2.
Execution time

(seconds) with different
numbers of partitions.
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stage which means that the stage requires time. For comparison fairness, the preprocessing
stage time has been included. All the experiment results, details and numbers are listed in
Table 3 and Table 4. The performance evaluation reveals several conclusions. Spark-
DNAligning shows a perfect scalability with the number of short reads. For instance, the
biggest dataset (SRR642648) which has 197,502,074 short reads, Spark-DNAligning needs
678.668s to complete the alignment. For the smallest dataset (100k) with 100,000 short reads,
Spark-DNAligning requires 64.499s. Hence, increasing the short reads by 197,402,074 just
increased the execution time by 614.169s. On the other hand, for the smallest and the biggest
datasets, CloudBurst requires 453.373, and 2,305.023 s respectively. Thus, the execution time
increased by 1851.65s. Results confirm the great improvement of in-memory computations
which is a core fundamental in Spark. Subsequently, Spark with its in-memory computations
is a well competitive for Hadoop-based tools as CloudBurst in this experiment. Furthermore,
Table 3 verifies that Spark-DNAligning outperforms SparkBWA in all cases with aminimum
speedup of 101.417 in SRR001113 case. According to the results, Spark-DNAligning has a
better overall performance in comparison to SparkBWA and CloudBurst. To cement the
benefits of the proposed algorithm, it is worth noting that Spark-DNAligning recorded the
speedup ranges from 101 to 702.

6. Conclusions
Recently, DNA sequencing speed has increased dramatically in most Next Generation
Sequencing (NGS) applications and because of it, a massive amount of data is generated from
DNA sequencing. That massive amount of data requires a scalable tool that has the ability to
perform computations on a high-performance level. Additionally, sequencing tools need to be
fast without using a large memory size. In fact, parallel platforms are promising solutions to
address all the aforementioned needs. In this article, Apache Spark has been used to solve
DNA short read alignment problem. Apache Spark is a scalable cluster-computing
framework which efficiently executes computations in-memory with a robust fault-tolerant
mechanism achieved by using resilient distributed dataset (RDD). Undoubtedly, in-memory

Dataset name Spark-DNAligning SparkBWA CloudBurst

100k 64.499 108.633 453.373
s_suis
Speedup (108.633/64.499)*100 5 168.426 (453.373/ 64.499)*100 5 702.915
SRR001113 229.446 232.698 556.522
chr22
Speedup (232.698/229.446)*100 5 101.417 (556.522/ 229.446)*100 5 242.550
ERR000589 354.845 366.038 577.554
chr22
Speedup (366.038/ 354.845)*100 5 103.154 (577.554/ 354.845)*100 5 162.762

Dataset name Spark-DNAligning CloudBurst

SRR062634 404.636 914.004
chr19
Speedup (914.004/ 404.636)*100 5 225.883
SRR642648 678.668 2,305.023
chr19
Speedup (2,305.023/ 678.668)*100 5 339.639

Table 3.
The execution time
(seconds) for Spark-
DNAligning,
SparkBWA and
CloudBurst.

Table 4.
The execution time
(seconds) for both of
Spark-DNAligning and
CloudBurst.
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computations have a low latency which improves performance dramatically. Spark-
DNAligning parallelizes the aligning processes by distributing short reads on a cluster. Also,
Spark-DNAligning enhances performance by utilizing the Spark broadcast variable to make
the reference genome available to all nodes in the cluster. Spark-DNAligning is designed in
such a way that gives its users the ability to control and tune partitions number which is
crucial since results have shown that the partitions number impacts performance
significantly. The source code of Spark-DNAligning is publicly available under the MIT
license on the GitHub repository:https://github.com/Maryom/Spark-DNAligning. Spark-
DNAligning has been evaluated by comparing it with SparkBWA and CloudBurst tools in
terms of performance. CloudBurst is a Hadoop based DNA short reads alignment tool. While
SparkBWA is BWA based on Apache Spark. Comparisons have been executed on two
different YARN clusters with five datasets. Spark-DNAligning speedup has been reached up
to 702. Spark-DNAligning boosts performance due to Spark in-memory computations and
many other performance optimizations. There is a strong belief that Spark-DNAligning will
help biologists in accelerating short read alignment process.
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