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Abstract

Organizations in many domains generate a considerable amount of heterogeneous data every day. Such data
can be processed to enhance these organizations’ decisions in real time. However, storing and processing large
and varied datasets (known as big data) is challenging to do in real time. In machine learning, streaming feature
selection has always been considered a superior technique for selecting the relevant subset features from
highly dimensional data and thus reducing learning complexity. In the relevant literature, streaming feature
selection refers to the features that arrive consecutively over time; despite a lack of exact figure on the number
of features, numbers of instances are well-established. Many scholars in the field have proposed streaming-
feature-selection algorithms in attempts to find the proper solution to this problem. This paper presents an
exhaustive and methodological introduction of these techniques. This study provides a review of the
traditional feature-selection algorithms and then scrutinizes the current algorithms that use streaming feature
selection to determine their strengths and weaknesses. The survey also sheds light on the ongoing challenges in
big-data research.
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1. Introduction

Feature-selection techniques are an important part of machine learning. Feature selection is
often termed as variable selection, attribute selection and variable subset selection. It is the
process of reducing input features to the most informative ones for use in model construction.
Feature selection should be distinguished from feature extraction. Although, both techniques
are used to reduce the number of features in a dataset, feature extraction is reduction technique
in dimensionality that creates new combinations of attributes, whereas feature selection
includes and excludes the attributes that are present in the data without changing them.
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Streaming feature selection has recently received attention with regard to real-time
applications. Feature selection with streaming data, known as streaming feature selection or
online streaming feature selection is a popular technique that uses selection of features that
are most informative to reduce streaming data size.

In streaming feature selection, the candidate features arrive sequentially. The size of these
features is unknown. Streaming feature selection has a critical role in real time applications,
for which the required action must be taken immediately. In applications such as weather
forecasting, transportation, stock markets, clinical research, natural disasters, call records,
and vital-sign monitoring, streaming feature selection plays a key role in efficiently and
effectively preparing big data for the analysis process in real time.

At present, contemporary methods in machine learning are being challenged by big data
as newer and faster algorithms deal with variable volumes of data. Making decisions in real
time from such continuous data could bring data monetization benefit which is a major source
of revenue. The world is projected to generate over 180 zettabytes (or 180 trillion gigabytes) of
data by 2025. This figure when compared with 10 zettabytes worth data created as of 2015
seems ubiquitous. The presence of large datasets is the reason for emergence of deep learning
which further led to artificial intelligence. Companies such as Google, Facebook, Baidu,
Amazon, IBM, Intel, and Microsoft are investing in capturing talent pool to understand big
data and release open artificial intelligence hardware and software [1].

Using big data for streaming feature selection is regarded as a solution to select the most
informative features that could support the development of robust and accurate machine
learning models. There are several techniques in data analytics. The newer algorithms on
dimensionality reduction are asymptotically better than the previous algorithms. Prior
research on feature selection has targeted searching for relevant features only. John et al. [2]
proposed three categories belonging to X input features and its importance in C target class:
(1) strongly relevant, (2) weakly relevant, and (3) irrelevant. Yu and Liu [3] improved this
categorization by proposing a definition of feature redundancy therefore creating a path for
efficient elimination of redundant features.

Let F" be a full set of features, F; a feature and S; = F — {F;}. The definitions and
techniques are listed as follows:

Definition 1 (Strong relevance). Feature Fi is strongly relevant if and only if
P(CIF;S;) #P(C|S;). @

Thus, a feature with strong relevance will always be in the final, optimal feature subset.
Definition 2 (Weak relevance). Feature F; is weakly relevant if and only if

P(C|F, S;) = P(C|S)), and 3S; C S, such that P(C|F;, S;) #P(C|S)). %)
A feature with weak relevance is not always in the final, optimal feature subset, but ideally, it
would be included.
Definition 3 (Irrelevance). Feature F; is irrelevant if and only if
VS C S, P(CIF;, S;) = P(C|S;). 3)

Irrelevant features are not necessary at all and thus should be discarded.

According to Yu and Liu [3] important and relevant features are segregated into necessary
and unnecessary features. Yu and Liu’s definition [3], which is based on Markov blanket is
that redundant features provide no extra information than the currently selected features and
irrelevant features provide no useful information in the final model.



The definition is from other authors is given below:

Definition 4 (Markov blanket). Given a feature F;, let M; C F(F; & M;), M; is said to
be a Markov blanket for F; if and only if

P(F —M; —{F}, C|F;, M;) = P(F — M; — {F}}, C|M). @)

Definition 5 (Redundant feature). Let G be the current set of features. A feature is
redundant and hence needs to be removed from G if and only if there is a
weak relevance and has a Markov blanket M; within G.

Figure 1 shows the relationship between redundancy and importance of a feature. The figure
shows segregation of entire feature sets into four disjointed subsets comprising of a)
irrelevant feature (I) b) redundant features (II) and less relevant features c) less relevant but
non-redundant features (IIl) and d) features that are strongly relevant (IV). It also depicts an
optimal subset having features of both (IIl) and (IV). It is necessary to mention that parts (II)
and (II) are disjointed but multiple partitions of these parts can form due to Markov-blanket
filtering.

The purpose of this paper is to survey the existing approaches to streaming feature
selection algorithms and to review the definitions related to streaming feature selection. The
study begins from Section 2 presenting the difference between streaming feature and
traditional feature selection. Section 3 illustrates details of feature relevance and feature
redundancy. Section 4 reports the challenges of using streaming feature selection in the
analysis of big data. Section 5 presents a discussion and comparison of the current
approaches to streaming feature selection. Finally, Section 6 provides the ¢ feature selection.

2. Feature selection taxonomy for classification

In systems based on machine learning, streaming feature selection sometimes referred to as
Online Streaming Feature Selection (OSFS) or online feature selection is a method used to
choose a group of important features (e.g. variable X or multiple predictors) from streaming
data to construct a theoretical model. Streaming feature selection allows for the most
informative features to be selected by eliminating redundant and irrelevant features. In
comparison with older feature selection methods, online feature selection leads to (a) models
that are easier for researchers and users to interpret (b) lesser training time, avoiding issues
and challenges related to dimensionality and (c) greater generalization through reduced over-
fitting [4]. Figure 2 illustrates the feature selection classification of data from two
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Figure 2.
Feature-selection
classification
taxonomy.

perspectives: static feature selection and streaming feature selection. In static data, all
features and instances of data are assumed to be captured well in advance, whereas
streaming data has unknown numbers of data instances, features or both.

2.1 Static feature selection

From the features perspective, static features can be categorized as flat features or structured
features. Flat features are independent. However, structures features are usually in the form
of the graph structure, tree structure or group structure. A conventional approach to feature-
selection is aimed at working with flat features which can be regarded as independent.
Algorithms in the flat-features category are subcategorized into three main groups: filters,
wrappers, and embedded models.

2.1.1 Flat features. 2.1.1.1 Filter methods. Feature selection is not related to machine-
learning algorithms. Instead, they focus on application of statistical measures for assigning
scores for each feature. This is followed by score based feature ranking that may be selected
or removed from the datasets. The methods are sometimes univariate and could consider the
features independently or with regard to the dependent variable, as shown in Figure 3.
Famous algorithms from this category include the Fisher score [5,6], information theory
based methods [7-9], and ReliefF and its variants [10,11].

The Fisher score, also known as the scoring algorithm [5,6] is a form of Newton’s method
used in statistics to numerically solve maximum likelihood equations. It is named after
Ronald Fisher.

Feature Selection

I
I I

Streaming feature selection
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Wrapper models — Tree structure
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Information theory based methods which is represented as a family consisting of feature
selecting algorithms are primarily methods that have its antecedents in information theory as
shown in Table 1. In probability and information theory, the amount of information that two
random variables share is a measure of their mutual dependence.

ReliefF and its variant feature-selection algorithms are used in the binary classification
that Kira and Rendell proposed in 1992 [20], features having high quality should give
matching values to instances belonging to the same class and non-matching values in case
instances belong to different classes. The strength of this method is that it does not depend on
the heuristics and uses low-order polynomial time to execute. There is a significant factor of
noise tolerance and it is tough to feature interactions along with the applicability of binary or
continuous data. Conversely, ReliefF will not discriminate among the existing redundant
features and it is easy to fool the algorithm by using less number of instances [10,11].
According to Kononenko, the reliability of the probability approximation of the ReliefF
algorithm can be improved through some updates and made more resilient to incomplete
data. Therefore, concluding it as a problem classified under multi-class problem [21].

In recent works, scholars have proposed feature grouping to pinpoint groups with
correlated features. This is an innovative method as it reduces the multi-dimensionality of
large datasets. We highlight some of these efforts below.

Among one of the strategies that uses feature grouping for increasing the efficiency of feature
search is called predominant group based variable neighborhood search (PGVNS) Garcia-Torres
et al.[22]. PGVNS uses approximate Markov blanket and a predominant feature. Garcia-Torres
et al. [22] also introduced the concept of predominant groups and argued in favor of a heuristic
strategy called GreedyPGG that group input space. While conducting the experiment they used
synthetic and real datasets obtained from the microarray and text-mining domains. The results
were compared with fast correlation based filter (FCBF) [3], fast clustering-based feature-
selection algorithm (FAST) [23], and CVNS [22] which are the three popular algorithms on
feature selection.

Gangurde [24] and Gangurde and Metre [25] have argued in favor of a clustering concept
that gives feature selection to handle the issue of dimensionality reduction in big data. A
minimum spanning tree is used to create a cluster formation therefore reducing the
computational complexity of feature selection. However, the study primarily deals with the
reduction of irrelevant features and graph clustering.

Lei Yu and Huan Liu [3] proposed a hybrid FCBF to find the most appropriate optimal
discriminative feature subset by trying to remove redundancy in features. Song et al.[23] has
proposed FAST for multidimensional data. The algorithm is a little different because it
operates in two stages. The first stage divides the features into clusters using graph theory
and the second stage selects the most informative features that are closely related to the
target class in each cluster to create a subset of final features.

2.1.1.2 Wrapper methods. They use a subset of features to train models. Based on a
previously generated model, features are added or removed from the selected subset. The
problem is thus essentially reduced to a search problem as shown in Figure 4. The only
limitation is that the method is computationally expensive. Some examples available in
feature selection are forward feature selection, backward feature elimination, and recursive
feature elimination. The recursive feature elimination algorithm, is an example from this
category [26].

Recursive feature elimination [27] selects features by selecting smaller sets recursively
according to the features. The first step is to train an estimator from an initial set of features.
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Table 1.
Categories of
information theory

Refs.

Information method

Description

(2]

(3]

(14]

(18]

[16]

17

(18]

(19]

(9]

Mutual information maximization
(or information gain)

Mutual information feature
selection (MIFS)

Minimum redundancy maximum
relevance (mRMR)

Conditional infomax feature
extraction

Joint mutual information

Conditional mutual information

maximization (CMIM)

Informative fragments

Interaction capping
Double input symmetrical

relevance

Fast correlation based filtering (Yu
and Liu, 2003)

Mutual information maximization (also known as information
gain) feature importance level by its correlation with a class
label. The assumption of this method is that in the event of a
feature having strong correlations with a class label, it can be
used to accomplish good classification performance.

MIFS was introduced to resolve the limitation of mutual
information maximization. It can take into consideration feature
relevance and feature redundancy at the same time during
feature selection phase.

To reduce the effect of feature redundancy, mRMR is used to
select features that have a high correlation with the class
(output) and low correlations among themselves.

Conditional infomax feature extraction was introduced to
resolve the gaps in both MIFS and mRMR, which both consider
feature relevance and feature redundancy at the same time. This
method assumes that given the class labels if feature
redundancy is stronger than intra-feature redundancy then
there is a negative effect on feature selection.

Since MIFS and mRMR are useful in lowering feature
redundancy during the process of feature selection, this
alternative method known as joint mutual information was
recommended to increase the sharing of complementary
information between a new unselected feature and the selected
feature when the class labels are given.

In CMIM, features are iteratively selected to enhance the
sharing of mutual information with class labels when the
selected features are given. In other words, CMIM does not
select the feature that is most similar to the previously selected
ones, even though the predictive power of that feature for the
class labels would be strong.

The intuition behind informative fragments is that adding a
new feature should maximize the value of conditional
information that the new feature and the existing features share
rather than the information that the features and the class share.
Interaction capping is similar to CMIM, but instead of
restricting the formula, interaction capping is non-negative.
Another type of information theory based method known as
double input symmetrical relevance takes advantage of
normalization approaches to normalize mutually exclusive
information.

This filtering method takes advantage of feature-feature and
feature-class correlations at the same time, using feature
selection methods that cannot be turned into a unified

based methods. conditional likelihood maximization framework easily.
Selecting the best subset
Generate a Learning
Figure 4. Set of all features Subset Algorithn Performance

The process for a
wrapper method.




This is to develop a deep learning on the importance of each feature. This process is
conducted recursively and pruned till the desired number of features is achieved.

2.1.1.3 Embedded methods. These methods benefit from qualities of filter and wrapper
methods combined. They are implemented using algorithms with inbuilt feature selection
methods. They are based on learning about which feature contributes the most to the
accuracy of the model as it is being created as shown in Figure 5. Embedded methods have
three types: pruning methods, models with inbuilt mechanisms for feature selection and
regularization models.

Pruning methods begins by using all the available features to train a model. This step is
followed by an attempt to eliminate the features by setting the value as 0 of corresponding
coefficients without reducing the performance. These methods use models such as recursive
feature elimination with a support vector machine (SVM) [27] which is a supervised machine
learning algorithm that can be used for both classification and regression challenges.

Models with inbuilt mechanisms for feature selection include ID3 [27] and C4.5 [27]. The
ID3 [27] iterative dichotomizer was the first of three decision tree implementations that Ross
Quinlan developed. ID3 builds a decision tree for the given data in a top down fashion starting
from a set of objects. C4.5[27]is an improved version of Quinlan’s earlier ID3 algorithm and is
used to generate a classification decision tree from a set of training data (in the same way as in
ID3) using the concept of information entropy.

Regularization models rely mostly on objective functions to reduce fitting errors to the
lowest. IT also aims to force the coefficients to be small and potentially reaching to 0 in the
meantime. Due to the good performance of regularization models, researchers have made
more efforts in this area. Famous algorithms from this category include lasso [28,29] and
elastic net [30].

Lasso [28,29] is method of regression analysis performing both the tasks of selecting a
variable and regularizing. This improves the prediction accuracy and interpretability of the
statistical model. Robert Tibshirani [28] introduced this method, which is based on Leo
Breiman’s nonnegative garrote.

Elastic net regularization [30] is an improved version of lasso [28,29]. It improves the
performance of regression analysis models of Lasso by penalizing for additional regression in
case there are more predictors than the sample size. This leads to improvements in prediction
accuracy by allowing the methods to select only the strongly correlated variables.

2.1.2 Structured features. This section provides a review of feature selection algorithms
for structured features. These features are treated like groups that have some regulatory
relationships. These structural features include graph, group and tree structures [31].

Selecting the best subset

Learning

Generate the .

Set of all features Subset Algorithm +
ubse Performance

Streaming
algorithms for
big data

119

Figure 5.
The process for an
embedded method.




ACI
18,1/2

120

2.1.2.1 Graph structure. A graph is a set of objects in which some pairs of objects are
connected by links. Let & = (N, E) be a given graph where N = (1, 2, ..., m)is a set of
nodes and a set of edges E. Node 7 is equivalent to the sth feature and A € R”*™ is used to
donate the adjacent matrix of 2. Thus, the nodes are representative of the features and the
edges represent the relationships between those features [31]. A real application of this
category is natural language processing. An instance of this is WordNet. It could indicate the
words that are synonyms or antonyms. There is evidence in biological studies that genes
work in groups based on their biological functions. Some regulatory relationships have been
found among those genes. Three typical algorithms are Laplacian lasso [32], graph-guided
fused lasso (GFLasso) [33] and GOSCAR [34].

In a Laplacian lasso [32] features show graph structures. When two features are connected
by an edge, chances are that they will be selected together. Therefore, they will show
matching feature coefficients. This can be achieved via a graph lasso by adding a graph
regularization to the feature graphs on the basis of the lasso method.

Graph-guided fused lasso (GFLasso) [33]is also a lasso variant. It was created to solve the
limitations found in the original technique. GFLasso considers positive and negative feature
correlations combined explicitly. The limiting factor for GFLasso is the use of pairwise
sample correlations for measuring feature dependencies. It is a choice that leads to an added
estimation bias. In a small sample size, GFLasso restricts the correct estimation of feature
dependencies.

GOSCAR [34] was created to resolve the problems encountered in GFLasso [33] by forcing
pairwise feature coefficients to be equal if they were connected over the feature graph.

2.1.2.2 Group structure. Group structure is about extracting highly informative subgraphs
from a set of graphs. However, some criterion of filtering must be applied. Frequency of sub-
graph is a commonly used method. An application of this category in real world can be found
in speed and signal processing. Here, groups can represent the various frequency bands. Two
typical algorithms are group lasso [35] and sparse group lasso [36].

Group lasso [35] provides for a combined selection of covariates as a single unit. In this
case, it proves quite beneficial. One of the applications of this technique is in performing
group selections or selecting group subsets. If a group is chosen, it means that all the
contained features are selected as well.

Sparse group lasso [36] has the added ability to choose groups and features in the selected
groups in parallel.

2.1.2.3 Tree structure. In a tree structure, the features are used to simulate a hierarchical
tree with a root value and subtrees (children of parent nodes). It is represented as a set of
linked nodes. A real application of this category is in image processing. In image processing, a
tree structure is used to represent the pixels from an image with a face in it. The parent node
holds the information of series of child nodes of the image describing spatial locality. Genes
and proteins in biological studies can form a certain tree structure according to hierarchy.

The typical algorithm in this structure is a guided tree group lasso [37]. It was proposed for
handling feature selection represented in the form of an index tree. In a tree-guided group
lasso, the structure of the features can be shown as a tree and the leaf nodes are the features.
The internal nodes represents the group of features in a way that each internal node is taken
as a root of a subtree and all the features that are grouped are the leaf nodes. Every internal
node is assigned a weight and height of that subtree which indicates the tightness of features
of that subtree.

2.2 Streaming feature selection
A preliminary distinction is needed between streaming data and streaming features. For
streaming data, the total number of features is fixed. Also, candidate instances in streaming



data are generated dynamically if the size of the instances is unknown. On the other hand,
streaming features are the opposite case since the number of instances is fixed. However, the
candidate features are generated dynamically if the size of the features is unknown.
Streaming feature selection has practical significance in many applications. For example,
users of the famous microblogging website Twitter produce more than 250 million tweets per
day, including many new words and abbreviations (i.e., features). In the case of tweets,
performing feature selection is not recommended due to longer wait time until all the features
are generated. Therefore, the use of streaming feature selection is preferred. Figure 6 presents
a basic framework for this method.

Step 1: Populate a new feature from the feature stream.

Step 2: Determine whether adding the new feature to the selected feature set is needed.
Step 3: Update the exiting feature set.

Step 4: Repeat Steps 1 through 3.

Coming features

Populate
new
feature

No, discard Add this
feature?

Yes

Update currently
selected features’ set Selected feature set
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The algorithm could have diverse implementations for Steps 2 and 3. In some studies
[38,39,40,41], Step 3 is considered an optional step in which only some of the streaming feature
selection algorithm from Step 2 is implemented.

The benefit of this framework selection is in its ability to find optimal subset. This
framework avoids implicitly handling feature redundancy and efficiently eliminates features
that are not required by explicitly managing redundancy found in the features [3].

2.2.1 Single feature selection. IBM [42] defined “big-data analytics” as the use of techniques
that can handle datasets from large and diverse backgrounds and multiple types. It does not
matter whether it is structured and unstructured or streaming and varies according to sizes.
Performing feature selection to lower data dimensionality is a desired phase in big-data
analytics. This phase comes before prediction.

Grafting [38] was considered as the first attempt towards streaming feature selection. It
was proposed in 2003 by Perkins and Theiler. Grafting is a popular framework for streaming
feature selection and regarded as a general technique for application in a variety of
parameterized models using a weight vector w that is subject to /1 regularization. The
variables in the proposed algorithms are considered one at a time. The weights are
re-optimized according to the available set of variables. The tasks in Perkins and Theiler’s
study were to select the feature subset and return the corresponding model for every unit time
step. According to Perkins and Theiler, there were uncertainties in the performance of feature
selection methods in this situation. They provided an alternative method known as grafting
which was stage-wise technique for gradient descent.

In 2006, Zhou Jing et al. [40] proposed alpha investing, another of the earliest
representative online feature selection approaches (along with grafting [38]). Alpha
investing or o investing used p values rather than information theory. In the case of a
p-value linked with t-statistic, it is the probability that coefficients of observed sizes can be
estimated through chance, even in the event of the true coefficient being zero.

The aim behind alpha investing was to control the threshold during feature selection. This was
made possible by selecting new features in the model. Alpha was “invested” thereby increasing
the wealth and threshold and allowing for a slight increase in inclusion of incorrect features in
future. In every instance when a feature is tested and determined to be insignificant, wealth is
“spent” which reduces the threshold [31]. In the case of alpha investing method, it sequentially
acknowledges newer features for feeding into a predictive model and modeling the set of
candidate features in the form of a dynamically generated stream. One of the benefits of using
alpha investing is its ability to handle feature sets of unknown sizes even up to infinity. The use of
linear and logistic regression to dynamically adjust the reduction threshold for errors is favored
such that the predictive model needs to evaluate a new feature for inclusion for each instance.

In another study Xindong Wu et al. [39] uses information theory to find answer to streaming
feature selection by utilizing Markov blanket concept. In earlier studies, Xindong Wu et al.
developed a framework that used feature relevance and a new algorithm called as OSFS along
with its novel adaptation called as Fast-OSFS. According to the published definitions in the
study, the features could be classified into one of these four categories: irrelevant features,
redundant features, weakly relevant but non-redundant features and strongly relevant features.
Thus, OSFS finds its application in online selection for features that are non-redundant and
strongly relevant using two step method. The first step is analysis of its online relevance and
second is online redundancy analysis. Furthermore, Xindong Wu et al. described the working of
a Fast-OSFS algorithm that improves the efficiency of OSFS. The concept behind Fast-OSFS is
the breakup of online redundancy analysis into two steps a) inner-redundancy analysis and b)
outer-redundancy analysis. Additionally, the same authors published an updated study [43] in
which they introduced an efficient Fast-OSFS algorithm that improved the performance of
streaming feature selection. The algorithm proposed in this study was evaluated on a large scale
using multidimensional datasets.



Kui Yu et al. [44] proposed another approach known as scalable and accurate online
approach (SAOLA) for handling multidimensional datasets feature selection sequentially.
SAOLA is based on a theoretical analysis and derived it from a low bound of correlations
between features for pairwise comparisons. It was followed by a set of pairwise online
comparisons for maintaining the parsimonious online model over longer durations.

Eskandari and Javidi [41] proposed a new algorithm called OS-NRRSAR-SA algorithm to
resolve OSFS from the rough sets (RS) perspective. This algorithm adopts classical concept of
RS based feature significance to reduce non-relevant features. Eskandari and Javidi claimed
that the primary advantage of the algorithm was that it did not need prior domain knowledge
concerning the feature space making it a viable alternative for true OSFS scenarios.

Wang et al. [45] proposed the dimension incremental algorithm for reduction computation
(DIA-RED). This algorithm maintained the RS-based entropy value of the currently selected
subsets and updated that value whenever new conditional features were added. While DIA-
RED is capable of handling streaming scenarios despite having limited or no knowledge of
the feature space, it can manage with the information contained in the lower approximation of
a set and avoid using information contained in the boundary region. Therefore, real-value
datasets cannot benefit from this algorithm. Also, DIA-RED algorithm does not possess an
effective mechanism that eliminates redundant attributes which leads to the generation of
large subsets during feature streaming. This is a prime reason for ineffective partitioning and
at the time of calculating RS approximations. Therefore, the algorithm falls short of its
expectations in handling most real-world datasets.

Gangurde [24] and Gangurde and Metre [25] proposed a novel clustering concept to
manage big data dimensionality reduction problem. A minimum spanning tree was used to
reduce the complexity in calculating feature selection and obtain a formatting of clusters.
However, this concept’s work scope is limited to dimensional reduction.

Javidi and Eskandari [46] have proposed a method that employs significance analysis
concept in the theory of rough sets for controlling unknown feature space in SFS problems.
The primary motivation for their consideration was that RS-based mining of data hardly
used any domain knowledge besides the datasets that were provided. The algorithm was
evaluated using several multidimensional datasets for its compactness, running time and
classification accuracy.

Tommasel and Godoy [47] presented an online feature selection method for
multidimensional data that is dependent on the combination of social and contextual
information. The goal of their work was classifying short texts that are generated
simultaneously in social networks.

2.2.2 Group feature selection. Xindong Wu et al. [48] proposes group feature selection with
streaming feature (GFSSF) at both levels — individual and group as a feature stream instead
of predefined feature set. Xindong Wu et al. also illustrated the GFSSF algorithm, which is
segregated into two distinct levels of selection. The first one at the feature level and second at
the group level is based on the tenets of information theory. Features from the same group are
processed in the case of feature level selection. Redundancy analysis is used for selecting the
best feature subset from the features that have arrived so far. In contrast, a set of feature
groups were reviewed to cover the uncertainty to a large extent in the class labels at a
minimum cost during the group level selection phase. Later on, this method finds a subset of
features that seem relevant and are sparse in both individual and group feature levels. In the
work done till date, single features are being targeted primarily and group features are left
unaddressed. Information theory is being used only for recognizing irrelevant features.

In 2015, Kui Yu et al. [49] extended SAOLA, their previous method [44] to handle a type of
online streaming group feature selection and called this group-SAOLA. The new group-
SAOLA algorithm could maintain an online set of feature groups that is sparse at the group
feature level as well as individual feature levels at the same time. For the group level, Kui Yu
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Figure 7.
Relevancy and
redundancy
evaluation.

et al. claimed that the group-SAOLA algorithm, while online could generate a set of feature
groups that is sparse both between groups and within each group. This would maximize the
methods predictive performance in classification.

Jing Wang et al. [50,51] tried to handle both single and group streaming feature selection
by introducing an online group feature selection (OGFS) algorithm for image classification
and face verification. Jing Wang et al. divided online group feature selection into online
intragroup selection and intergroup selection. They designed two criteria for intragroup
selection based on spectral analysis and introduced the lasso algorithm to reduce the
redundancy in intergroup selections.

3. Attribute evaluation relevancy and feature redundancy

The objective of streaming feature selection is to choose (while online) the subset of features
from a multidimensional data which leads to an increase in accuracy and robustness. This
can be achieved by removing the features that are irrelevant and redundant.

In streaming feature selection, the optimal, final feature subset should be relevant to the
class and should not be redundant with any other existing features to increase robustness.
Thus, we can determine two feature testing stages that would be used in selecting the final and
most optimal subset. Thus, we can use relevance analysis which can determine the subset of
relevant features while removing the ones that are irrelevant. Similarly, we can use redundancy
analysis to remove redundant features and leave a final subset as depicted in Figure 7.

3.1 Relevance analysis

In relevance analysis, a single feature’s relevance to the selected class is evaluated. The
criterion for relevance decides how effectively a variable can distinguish between a class or a
feature and a class [52].

Relevance Test (X, Y) = how useful X is for predicting Y 5)

In feature relevance, a feature is evaluated individually and discarded if it fails to reach a
chosen cutoff point. Table 2 is a comparison of some existing algorithms that are used to
evaluate a feature’s relevance to a class as part of a classification problem.

Chi-squared [53] is used to calculate the worth of an attribute by computing the value of
the chi-squared statistic with respect to the class.

Gain ratio (GR) [53] is used to evaluate the worth of an attribute by measuring the gain
ratio with respect to the class. The gain ratio is given by

_ H(class) — H (class|attribute)
- H (attribute)

GR ©)

where H is the entropy.
Information gain (IG) [53] is used to evaluate an attribute’s worth by measuring the
information gain with respect to the class. The information gain is given by

IG = H(class) — H (class|attribute). )
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Algorithm

Properties

Grafting[38]

Alpha investing [40]

OSFS and Fast-OSFS
[39]

SAOLA [44]

OS-NRRSAR-SA [41]

DIA-RED [45]

Single or group feature selection: single.

Compared with which algorithms: none.

Datasets: Two synthetic datasets (A and B) and Pima Indian Diabetes dataset
(Blake & Merz, 1998) [69].

Classifiers: Combination of the speed of filters and the accuracy of the wrapper.
Environment: Not mentioned.

Single or group feature selection: single.

Compared with which algorithms: none. The appraisal was limited to the accuracy of
the whole dataset.

Datasets: Seven datasets from the UCI [57] repository: cleve, internet, ionosphere,
spam, spect, wdbc, and wpbc. Three datasets on gene expression: aml, ha, and
hung.

Classifiers: C4.5, fivefold cross-validation.

Environment: Not mentioned.

Single or group feature selection: single.

Compared with which algorithms: Grafting and alpha investing [71].

Datasets: Ten public challenge datasets: lymphoma, ovarian-cancer, breast-cancer,
hiva, nova, manelon, arcene, dexter, dorohthea and sido0.

Classifiers: k-nn, decision tree (J48) and random forest (Spider 2010).
Environment: Windows XP, a 2.6GHz CPU, and 2 GB memory.

Single or group feature selection: single.

Compared with which algorithms: Fast-OSFS [43], alpha investing [71], OFS [72],
FCBF [3], as well as two state-of-the-art algorithms, SPSF-LAR [73] and GDM [74].
Datasets: Ten high-dimensional datasets: two public microarray datasets (lung
cancer and leukemia), two text-categorization datasets (chsumed and apcj etiology),
two biomedical datasets (hiva and breast cancer), three NIPS 2003 (dexter, madelon,
and dorothea) and the thrombin dataset, which was chosen from KDD Cup 2001.
Four extremely high-dimensional datasets from the Libsvm dataset website:
news20, urll, webspam, and kdd2010.

Classifiers: KNN and J48, which are provided in the Spider Toolbox2 [75].
Environment: Intel i7-2600 with a 3.4GHz CPU and 24 GB of memory.

Single or group feature selection: single.

Compared with which algorithms: Grafting, information investing [71], fast-OSFS,
and DIA-RED.

Datasets: Fourteen high-dimensional datasets: The dorothea, arcene, dexter, and
madelon datasets from the NIPS 2003 Feature-Selection Challenge. The nova, sylva,
and hiva datasets from the WCCI 2006 Performance Prediction Challenges. The
sido0 and cina0 datasets from the WCCI 2008 Causation and Prediction Challenges.
The arrhythmia and multiple features datasets from the UCI Machine Learning
Repository. Three synthetic datasets: tml, tm2, and tm3.

Classifiers: ]48, JRip, Naive Bayes, and kernel SVM with the RBF kernel function.
Environment: Dell workstation with Windows 7, 2GB of memory, and a 2.4 GHz
CPU.

Single or group feature selection: single.

Compared with which algorithms: None.

Datasets: Six datasets from the UCI [57] Machine-Learning Repository: Backup-
large, Dermatology, Splice, Kr-vs-kp, Mushroom, and Ticdata2000.

Classifiers: information entropy used to measure the uncertainty of a dataset:
complementary entropy [76], combination entropy [77], and Shannon’s entropy [78].
Environment: Windows 7, an Intel Core 17-2600 CPU (2.66GHz), and 4 GB of
memory.
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Table 2.

Algorithm

Properties

GFSSF [48]

group-SAOLA [49]

OGFS [50 51]

Single or group feature selection: singleand Group selection.

Compared with which algorithms: Five standard feature-selection algorithms: MIFS
[13], joint mutual information [79], mRMR [8], ReliefF [20], and lasso [28]. Four
streaming-feature-selection algorithms: grafting [38], o investing [40], OSFS [39],
and Fast-OSFS [39]. One group-feature-selection algorithm: group lasso [35].
Datasets: Five UCI [57] benchmark datasets: WDBC, WPBC, IONOSPHERE,
SPECTF, and ARRHYTHMIA. Five challenge datasets with relatively high feature
dimensions) downloaded from http://mldata.org/repository): DLBCL (7,130
features; 77 instances), LUNG (7,130 features; 96 instances), CNS (7,130 features; 96
instances), ARCENE (10,000 features; 100 instances), and OVARIAN (15,155
features; 253 instances). Five UCI [57] datasets with generated group structures:
HILL-VALLEY (400 features; 606 instances), NORTHIX (800 features; 115
instances), MADELON (2,000 features; 4,400 instances), ISOLET (2,468 features;
7,797 instances), and MULTI-FEATURES (2,567 features; 2,000 instances).
Classifiers: NaiveBayes [80], k-NN [81], C4.5 [82], and Randomforest [83].
Environment: Windows 7, a 3.33GHz dual-core CPU, and 4 GB of memory.

Single or group feature selection: group

Compared with which algorithms: Three state-of-the-art online-feature-selection
methods:

Fast-OSFS [43], alpha investing [40], and OFS [43]. Three batch methods: one well-
established algorithm (FCBF) [3], and two state-of-the-art algorithms (SPSF-LAR
[73] and GDM [74)).

Datasets: Ten high-dimensional datasets: madelon, hiva, leukemia, lung-cancer,
ohsumed, breast-cancer, dexter, apcj-etiology, dorothea, and thrombin. Four
extremely high-dimensional datasets: news20, urll, webspam, and kdd2010.
Classifiers: KNN and J48, which are provided in the Spider Toolbox [75], and SVM.
Environment: Intel 17-2600, a 3.4GHz CPU, and 24 GB of memory.

Single or group feature selection: singleand group.

Compared with which algorithms: Grafting, alpha investing, and OSFS.

Datasets: Eight datasets from UCL: Wdbc, Ionosphere, Spectf, Spambase, Colon,
Prostate, Leukemia and Lungcancer. Three datasets from the real world: Soccer,
Flower-17, and 15 Scenes.

Classifiers: appraisal was based on number of the selected features.
Environment: Windows XP, a 25GHz CPU, and 2 GB of memory.

ReliefF [53]is used to evaluate an attribute’s worth by sampling an instance several times and
taking the value of the given attribute for the nearest instance of the same class and of a
different class. The formula for ReliefF is

W(A) = W(A)

where

S Ldiff (A, Ry, Hy)

g*k
. _ ®
> esctsstiy) | sty Sopa il (As, Ri, My(c))
+ Y ,
. value(A, I) — value(A, I
diff (A, I, L) = [2elueld, 1) — value(d, ) ©

max(A4) — min(A)

Significance [53] is used to evaluate an attribute’s worth by computing its probabilistic
significance as a two-way function (both attribute-class and class-attribute associations).


http://mldata.org/repository

Symmetrical uncertainty (SU) [53] is used to evaluate an attribute’s worth by measuring
its symmetrical uncertainty with respect to a class; it is given by

H (class) — H (class|attribute)
H(class) + H (attribute)

SU =2 * (10)

3.2 Redundancy analysis
Redundancy analysis is used to evaluate features’ similarity. In other words, it is used to
answer the question: How much can adding a new feature improve the accuracy of a machine-
learning model?

Yu and Liu (2004) [12] defined a feature as predominant (both relevant and non-redundant)
if it does not have an approximate Markov blanket in the current set. For two relevant
features, FyandF;(i #J), F; forms an approximate Markov blanket for F; if

S(]]',c > S(]z',c and S(]lf 2 SU}"’ 1y

where SUj, is a correlation between any feature and class and SU;; is a correlation between
any pair of features, F; if and F;(i #7).

Correlation-based feature selection (CFS) [54,53] is a popular technique for ranking the
relevance of features by measuring the correlations between features and classes and
between features and other features.

Given £ features and C classes, CFS defines the relevance of the feature subset using
Pearson’s correlation equation:

kr, I

Merit, = —————,
k+ (k — 1)7’}3;3

(12)

where Merit, is the relevance of the feature subset, 7, which is defined as the average linear
correlation coefficient among features and classes. Also, 7y is defined as the average linear
correlation coefficient among unique individual features. Normally, CFS adds or deletes one
feature at a time using forward or backward selection. However, this research used sequential
forward floating search (SFFS) as the search direction.

Sequential forward floating search (SFFS) [53,55]is a classic heuristic searching method. It
is a variation of bidirectional search and sequential forward search and is thus part of the
dominant direction of forward search. SFFS removes features (backward elimination) after
adding features (forward selection).

The numbers of forward and backward steps are not fixed and can be controlled
dynamically depending on the criterion of the selected subset. This eliminates the need for
parameter setting.

4. Challenges of using streaming feature selection big data analytics

As mentioned earlier, big data has created challenges that are yet to be addressed by traditional
machine learning practices. This has led to the adoption of methodologies capable of handling
increasingly large data volumes. To overcome this challenge, improving streaming feature
selection is necessary to introduce better and more efficient approaches for handling extremely
high dimensionality of big data. In this section, we highlight some of these challenges which could
be considered hot topics in streaming feature selection.

4.1 The extremely high dimensionality of big data
In big data, feature selection is generally considered a strong technique for selecting a subset
of relevant features and reducing the dimensionality of extremely high dimensional data.
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The streaming of big data is more challenging as the number of unknown features is high.
Sometimes, it is reaching levels that render existing feature-selection methods obsolete.

Today, in the age of big data, social media is considered the main source of streaming data.
Big data is extremely large and growing as a fast pace. In short, big data can be so large and
complex that none of the traditional data management tools can store or process it efficiently.
Feature selection is generally considered a strong technique for preferring a subset of
relevant features and lowering the multidimensionality of data. However, in the case of
streaming big data, streaming feature selection is more challenging because of the large
number of unknown features.

Big data can be characterized by the 5V’s [56]:

(1) Volume — The quantity of generated and stored data determines its value and
potential insight that can be drawn from it and also if it can be considered as big data.

(2) Variety — The type and nature of the data helps analysts to effectively use the
resulting insight.

(3) Velocity — Means the rate at which data is created and processed to fulfill the needs of
growth and development challenges.

(4) Variability — Inconsistency can hamper processes that is meant to manage a dataset.

(5) Veracity — Captured data can vary greatly in terms of quality thus affecting the
accuracy of the analysis.

The UC Irvine Machine Learning Repository (UCI) is a collection of databases, domain theories,
and data generators used by researchers devoted to machine learning using empirical analysis
of machine learning algorithms [57]. This repository started around 1987 when the maximum
dimensionality of data in a multivariate dataset was 8,124 instances and 22 features. A thyroid
disease dataset in the same time had 7,200 instances and 21 features. However, the number of
instances and features had increased to millions by the end of 2017. In the case of the causal-
discovery KASANDR dataset which has 17,764,280 instances and 2,158,859 features.

In this scenario, the methods that experience the greatest challenges are feature selection
and streaming feature selection. For example, Zhai et al. [58] needed more than 24 h of
computational effort, using state-of-the-art feature selectors (SVM/recursive feature
elimination and mRMR) to analyze data for a psoriasis single-nucleotide polymorphism
dataset composed of only half a million features. Moreover, many modern feature selection
methods are based on algorithm designs for computing pairwise correlations. In the case of a
million features, the machine must be capable of handling a trillion correlations effectively
which poses a significant issue for machine learning researchers [59].

4.2 Scalability

Scalability is defined as “the impact of an increase in the size of the training set on the
computational performance of an algorithm in terms of accuracy, training time and allocated
memory” [59]. Today, with the exposure of big data, those who use traditional methods are
struggling to cope with the extreme high-dimensionality of big data as they attempt to extract
satisfactory results in a reasonable time.

The extremely multidimensional big data is unable to load in the memory in a single data
scan. Therefore, it is challenging to get a score of feature relevance without considering
sufficient density surrounding every sample.

Considering the available approaches for large-scale selection of features there are two
prominent phases. The first phase measures the relevance of individual features and then
ranks them according to their relevance values. The values that show the highest relevance



only are used for input in the second phase. However, this approach presents the limitations
that it may remove the features that are lowly ranked or even consider its interactions with
other features [60].

4.3 Stability
The stability of feature selection is defined [61] as the sensitivity that the selection process has
to data perturbation in the training set. Stability quantifies how a training set affects feature
selection. The feature selection algorithm for classification is measured using classification
accuracy. Thus, the stability of any algorithm is a critical factor when developing feature
selection.
Alelyani et al. [62] has presented and argued for some characteristics of data that may play
a vital role in stabilizing the algorithm. They are dimensionality (m), size of sample (n) and
data distribution across folds. Therefore, the stability issue tends to be dependent on data.
A measure of stability requires a similarity measure for feature preferences. Researchers
have proposed various stability measures to evaluate robustness [63,64,59]. These measures
can be placed in three categories:

Category 1: A weight or score is assigned to each feature, indicating its importance.

For a vector of features f = (f1, f2, ..., fu), this category produces a feature set as
follows:
weighting — scoring : w = (wy, we, ..., W,), W W C R".

Category 2: This is a simplification of the first category; ranks are assigned to features
instead of weights.

For a vector of features f = (f1, f2, ..., fm), this category produces a feature set as:
follows
ranking < v = (11, 72, ..., V), 1<, <.

Category 3: These measures consist of sets of selected features for which no weighting or
ranking is considered.

For a vector of features f = (f1, f2, ..., fu), this category produces a feature set as
follows:
subsetoffeatures : s = (s1, S2, ..., Sm), Si € {0, 1}, with 0 indicating absence of a feature

and 1 for presence.

For streaming feature selection, the challenge lies with the unknown features. Selecting the
most informative features from among the current features challenges the stability of any
proposed algorithm. As a result, updating the selected subset also challenges the robustness
of the algorithm.

4.4 Sustainability

The volume of data increases by 90% of the data in the world which has been created in the
last two years. Data is generated from different resources like mobile phones, sensors, and
social media in continuous manner. This data is expected to grow in the near future
dramatically. The data revolution would pose a challenge for resources sustainability.
Sustainability means the ability to optimize resource usage. Thus, finding a new way to
reduce the extremely high dimensionality of big data would result in big savings in the
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analytic process. It is clear from previous examples that feature selection would be considered
as the first option to reduce the dimensionality of any data. This would allow picking
informative features only rather than considering all of them. Consequently, the streaming
feature selection would efficiently resolve the sustainability issue of streaming big data.
Recently [65-68] highlight has been the greening issue of big data in the big data analytics.
The process of big data analytics are accompanied with lot of computing workloads, which is
time consuming at the same time energy and resource inefficient.

5. Discussion and comparison

This section discusses streaming feature selection algorithms and examples that we
demonstrated in Section 2. It also compares these algorithms based on the big-data challenges
that were discussed in Section 4. Table 2 is a comparison of the reviewed streaming feature
selection algorithms. Note that these algorithms use either single feature selection, group
feature selection or both. Table 2 presents a comparison of the algorithms based on the
feature selection type, how they compare to other online feature selection methods, datasets
and classifiers that were used to report the classification accuracy and the environment of the
experiment.

As mentioned earlier, grafting [38] and alpha investing [40] are two of the earliest methods
for online feature selection. Grafting algorithm is based on a stage wise gradient descent
approach for streaming feature selection. However grafting has some limitations. It can
obtain a global optimum with respect to features included in the model, it is not optimal as
some features are dropped during online selection. Besides, the gradient retesting over all the
selected features greatly increases the total time cost. Thus, tuning a good value for the
important regularization parameter A requires the information of the global feature space.
Similarly, Alpha-investing does not reevaluate the selected features, it hence performs
efficiently, but it is probably performing ineffectively in the subsequent feature selection for
never evaluating the redundancy of selected features [50]. These limitations for high-
dimensional data were recognized at the time they were created. For example, the Pima Indian
Diabetes dataset (Blake & Merz, 1998) [69] found that grafting has 768 instances and eight
attributes. Likewise, alpha investing used a spam dataset [70], which had 4,601 instances and
57 attributes. Jing Wang et al. in their OGFS experiments [50,51], used the method of grafting
for performing feature selection using the gradient descent technique which can be quite
effective in pixel classification.

However, this method still requires a global feature space for defining key parameters
during the selection of features. Therefore, it presents limitations in cases where feature
stream is infinite or has an unknown size. Also, alpha investing calculates each new feature
using a p-value that is from a regression model. In case where the p-value of a new
feature goes to a certain limit or threshold (known as a), the algorithm selects the feature.
Therefore, alpha investing never discards a feature once it has been selected.

Currently, researchers focusing on OSFS, Fast-OSFS [39], SAOLA [44] and group-SAOLA
[49] are taking the lead in this area. Following their work history, these researchers started
with the OSFS [39], Fast-OSFS [39], and SAOLA [44] to handle single feature selection. After
that, they introduced group-SAOLA [49] to handle both single and group feature selection. In
OSFS [39] features are selected according to the relevance they have online and whether they
are redundant or not. Based on the relevance it holds to the class label, input features are
labeled as strongly relevant, weakly relevant or non-relevant. Online relevance analysis
provides for the features that are relevant. Markov blankets are used to remove redundant
features. In the case of OSFS, every time a method includes a new feature, it is necessary to
reanalyze the redundancy of all selected features. To improve the performance of conducting
redundancy analysis, a fast-version of OSFS is proposed known as Fast-OSFS [39].



Method
Feature Streaming feature Feature Streaming feature
Related work selection selection grouping grouping and selection

Grafting [38]

Alpha investing [40]
PGVNS [22]

FCBF [3]

OSFS and Fast-OSFS [39]
SAOLA [44]
OS-NRRSAR-SA [41]
DIA-RED [45]

Gangurde [24] and
Gangurde and Metre [25]
group-SAOLA [49]
OGFS [50,51]
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The Fast-OSFS experiments uses eight UCI[57] benchmark databases. Researchers compared
Fast-OSFS’s performance with those of grafting and alpha investing [71] algorithms using
the k-nearest neighbor (or k-nn), decision tree, and random forest datasets. SAOLA managed
to handle a multidimensional dataset which allowed it to overcome the two challenges of big
data — scalability and extreme multidimensionality.

Another attempt to resolve the problem of streaming feature selection is OS-NRRSAR-SA
[41]. This method uses RS-based data mining to control unknown feature space without
needing any domain knowledge. During experiments, Eskandari and Javidi compared the
algorithm’s performance with those of four modern algorithms (grafting, information
investing [71], fast-OSFS, and DIA-RED) using 14 benchmark datasets. For these
experiments, the computer had 24 GB of memory which gave this algorithm a
performance benefit relative to other algorithms.

DIA-RED [45], another single feature selection algorithm was proposed to resolve the issue
of streaming feature selection. In the experiments on this method, the researchers used only
six datasets from UCI’s [57] repository of machine learning: Backup-large, Dermatology,
Splice, Kr-vs-kp, Mushroom, and Ticdata2000. However, the researchers didn’t compare their
method to other state-of-art streaming-feature-selection algorithms. They only measured the
uncertainty of the tested datasets compared to the traditional feature selection approaches.

On the other hand, GFSSF [48], group-SAOLA [49] and OGFS [50,51] were designed to
handle group feature selection. The GFSSF algorithm has the edge over both group-SAOLA
[49] and OGFS [50,51] according to a comparison with lasso [35] which is a group feature
selection algorithm. However, in terms of big data, group-SAOLA used fewer resources such
as memory. Using more resources would enhance this methods chance of prevailing in the
big-data scalability challenge. Table 3 contains a comparison of some of the reviewed
streaming feature selection algorithms. This comparison is based on the approach used to
reduce the redundancy of the received features.

6. Conclusion and future work

Streaming feature selection plays an important role in the preprocessing stage of big-data
mining. It also has relevance in machine-learning applications as it can reduce the extreme
high-dimensionality of big data. In machine learning, streaming feature selection is generally
considered a strong technique for selecting a subset of relevant features. This is because it
can reduce the dimensionality in an online fashion. Therefore, streaming feature selection is
considered an attractive research topic in big data.
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This survey paper is intended to provide a comprehensive overview of recently developed
streaming feature selection algorithms to promote research in this area. First, we introduced
the background of traditional feature selection and streaming feature selection. This was
followed by describing the difference between both. It was followed by an illustration of
feature relevance and redundancy. Then, we highlighted some challenges of streaming
feature selection in the context of big data. We also surveyed the current efforts in streaming
feature selection by discussing and comparing them with the general framework.

The algorithms reviewed in this survey provides the necessary learning to suggest future
research directions and to resolve the present challenges in the use of streaming feature
selection for big data. The existing approaches for streaming feature selection involves
testing new features one by one to select the optimal subset. This procedure does not work
with the extreme high-dimensionality of big data for which more innovative approaches are
needed.

Another research direction is in the stability of streaming feature selection. Big data
brings challenges related to an unknown or even infinite number of features. In this context,
selecting the most informative features will change the stability of any proposed algorithm.

The scalability challenge is another future direction for research into online feature-
selection algorithms. Even with the significant power of existing computers, big data cannot
be loaded in memory in a single data scan. It is a big challenge to obtain a relevance score for
features without having sufficient density around each sample.
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