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Abstract
In this paper, an emerging state-of-the-art machine intelligence technique called the Hierarchical Temporal
Memory (HTM) is applied to the task of short-term load forecasting (STLF). A HTM Spatial Pooler (HTM-SP)
stage is used to continually form sparse distributed representations (SDRs) from a univariate load time series
data, a temporal aggregator is used to transform the SDRs into a sequential bivariate representation space and
an overlap classifier makes temporal classifications from the bivariate SDRs through time. The comparative
performance of HTM on several daily electrical load time series data including the Eunite competition dataset
and the Polish power system dataset from 2002 to 2004 are presented. The robustness performance of HTM is
also further validated using hourly load data from three more recent electricity markets. The results obtained
from experimenting with the Eunite and Polish dataset indicated that HTM will perform better than the
existing techniques reported in the literature. In general, the robustness test also shows that the error
distribution performance of the proposed HTM technique is positively skewed for most of the years considered
and with kurtosis values mostly lower than a base value of 3 indicating a reasonable level of outlier rejections.
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Overlapping temporal classification
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1. Introduction
Short term load forecasting (STLF) has been studied widely by many researchers. Artificial
neural network techniques including variants of feed-forward back propagation algorithms,
extreme learning machines and deep neural networks have been applied to STLF problems;
genetic algorithms including hybrid optimizations have been used for day-ahead forecasts.
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Auto-regressive Moving Average (ARMA) models and its variants have also been applied to
various STLF problems. However, the problem of predicting in the short-term say in hours or
days, and the extensive hyper-parameter tuning in existing techniques has made the task of
forecasting the electricity load in an existing power system a continual challenge.

This section presents the related works in this area of forecasting that have used the tools
of Artificial Intelligence (AI) or statistical modeling; the emphasis here is to enable the reader
gain an understanding on some of the various AI or statistical techniques actively in use in
the times past and till this present moment. It also proposes the Hierarchical Temporal
Memory – an emerging neural network for streaming time series forecasting as yet another
candidate STLF problem solver and states the objective of this research study.

1.1 Related works
While there is no universal approach to solving the STLF problem, research on STLF
techniques have indeed been very active with a specific direction in the area of Artificial
Intelligence (AI). Some of the various AI techniques may be categorized into hybrid
evolutionary optimization approaches, pure or hybrid statistical techniques such as
regression modeling and pure or hybrid (ensemble) neural networks.

Evolutionary computing uses the principles of natural competition such as Darwinian
criterion for survival of the fittest. In [1], a Hybrid Evolutionary Optimization (HEO) for STLF
problems have been proposed; it included the use of Hybrid Features Selection Method (HFS)
based on Genetic Algorithms and Rough Sets for optimal selection of features and for reliable
predictions of a popular electrical load time series competition dataset (the Eunite dataset). A
Hybrid short-term load forecastingmodel based on principal component analysis (PCA) and a
Mind Evolutionary Algorithm (MEA) for optimizing an Elman neural network have been
proposed in [2]. The systemmodel has been applied to power systems data in Eastern Europe
with improved accuracies reported over the existing Elman without MEA optimization; the
Elman network suffers from the local optima problem and the requirement of much iteration
before convergence.

On the other hand statistical modeling techniques generally use some statistical measure
such as the average (mean) or moving averages, variance or co-variance of the underlying
data in conjunction with data regression (data fitting). Often time’s auto-regressive or non-
linear auto-regressive models in a hybrid fashion have been used for load forecasting [3]. One
interesting hybrid statistical technique can be found in [4] where a combination of image
processing and statistical techniques was used to perform day-ahead forecast in the
California (USA) and Spanish electricity markets; day-ahead forecasts is one popular aspect
of the STLF technique employed by power system economic managers and operators for
decision making in the power markets. For the image processing step, the authors used a
discrete wavelet transform (DWT) which is based on a two-pass signal (data) decomposition
stage for image processing. The statistical technique included the Holt-Winters method
(an exponential smoothing method) based on triple-smoothing stage and the weighted
nearest neighbors technique for modeling a deterministic component (using trend and
seasonality factors) and a fluctuation component (using fast changing data dynamics)
respectively. The deterministic and fluctuation components were decomposed from the
original historical load using a Haar DWT.

In the case of neural network approaches, the attention has been particularly impressive.
For instance, one neuronmodels have been proposed for forecasting electrical load time series
with promising results obtained over the Exponential Smoothing (ES) and Auto-regressive
Integrated Moving Average (ARIMA) models [5]. In [6], day-ahead electricity price forecasting
for Pennsylvania-New Jersey (PJM) interconnection was conducted using a hybrid approach
including the back-propagation artificial neural network (ANN) and a weighted least square
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(WLS) technique. In particular, they utilized the WLS state estimation (WLS-SE) technique to
form a better prediction of the price data fluctuations.

Another hybrid neural technique can be found in [7] where an ensemble approach based
on the Extreme Learning Machine (ELM) and a partial least squares regressor for
aggregating the ensemble predictor outputs with wavelength pre-processing was proposed.
Ensemble approaches avoid the overtraining issue faced by the conventional single ELM
neural networks and facilitates the wavelength parameter determination. This method was
also used for hourly and day-ahead forecasts of electricity loads (public datasets). Their
proposed model was compared with some popular machine learning (ML) approaches and
was shown to outperform the existing models with superior results reported.

In [8], point short-term load forecastingwas carried out based on Chaos theory and a radial
basis function (RBF) neural network. The Chaotic-RBF neural network involved the
computation of a Lyapunov index to identify chaos – this however, is an expensive process
and may hamper prediction accuracies.

More recently, in [9] was proposed the use of random weight initialization which can help
the standard feed-forward Artificial Neural Network (ANN) converge faster. However, this
does not overcome the problem of vanishing gradients particularly for networks that run on
deeper architectures; more on this problem can be found in [10,11].

Some other important related researches in this field can also be found in [12] which
surveyed different data mining techniques for electricity price and demand forecasting, in
[13] which uses the pattern similarity sequence (PSS) technique based on labels for electricity
price and demand forecasting and the load forecasting technique based on deep learning [14].

While most of these researches have had profound effect on various application domains,
the issue still persists as to how accurately these approaches can solve the STLF problem in
addition to the need to avoid excessive hyper-parameter tuning and make online (continual)
predictions. Thus, there is still room for improvement on existing AI methodologies and
schemes.

More recently, cortical-like algorithms such as the Hierarchical Temporal Memory (HTM)
have been a promising technique for several real world prediction tasks. However, very little
work has been done in the area of applying cortical-like algorithms to electrical load time
series data for forecasting in the short-term. These are algorithms that are modelled closely to
the way the human brain operate. They learn a sparse distributed representation, form
threshold coincidence maps, inculcate the notion of time and hierarchy and are capable of
online (continual) learning [15–18]. Also as earlier mentioned, the problem of extensive hyper
parameter tuning in the conventional artificial neural networks and the inability of most
existing neural models to perform multiple/continual predictions makes cortical-like
algorithms particularly very attractive [19].

1.2 Research objective
The primary objective of this research is to determine the effectiveness of the HTM Spatial
Pooler’s (HTM-SP) continual predictive ability on some open source electrical load time series
datasets. In attempt to validate the effectiveness of this important machine intelligent
technique, experimental simulations of daily and hourly electrical load forecasts using the
HTMSpatial Pooler with an overlapping temporal classification (OTC) scheme are presented.

1.3 Structure of paper
This paper is structured as follows: in Section 2 we describe the HTMmodel used for making
short-term electric load time series forecasts. Section 3 presents the experimental forecasting
results on several electrical load time series data. Finally, we give our discussions in Section 4
and conclusion/future work directions in Section 5.
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2. Hierarchical Temporal Memory
The Hierarchical Temporal Memory (HTM) is a constrained machine intelligence algorithm
and neural network for continual learning tasks [20]. The principle of operation of HTM is
based on the formation of sparse distributed representations and then learning and making
predictions from these representations using neurobiological principles. HTM is implemented
as a suite of algorithms called the Cortical Learning Algorithms (CLA); these algorithms are
constrained algorithmic implementations of the operation of the neocortex, the seat of
intelligence in the brain [17,20]. Basically, these algorithms consist of two core parts: A HTM
Spatial Pooler (SP) for forming sparse distributed representations of real world sensory input or
synthetic sensory-like data and a HTM Temporal Pooler (TP) part for making predictions on
the SDRs formed by the HTM-SP.

SDRs are basic data structures of the HTM that capture the learning units used in the
brain; the SDRs used in the HTM architecture follow the notion of sparse coding earlier
suggested for learning sensory inputs in Olshausen and Field [21,22].

A typical neuron model used in a HTM system implementation is given in Figure 1. This
model is inspired by neuroscience studies of activity-dependent synaptogenesis which
borders on the growth and origin of the biological synapses stimulated by external sensory
signals [23]. In this diagram, the connections comprising the green blobs represent proximal
synapses which are typically linearly summed to produce a feed-forward activation; distal
synapses are represented by segments of blue blobs that are or-ed (logically summed) to give
a dendrite spiking neuron activation when they exceed a certain recognition threshold
(indicated by the Sigma sign). Feedback and context experiences are formed using these
distal connections.

Interestingly, as a machine intelligence cortical learning technique, there is an important
difference on howHTMmakes time series predictions when compared to other similar neural
or machine learning models. In HTM, predictions are performed online in both spatial and

Figure 1.
An HTM Neuron

Model: adapted from
Ref. [24].
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temporal domains using sparse distributed representations (SDRs). Rather than simply
learning on a training set and later making predictions from the training test – as is the case
withmost other neural models, HTM continually predicts the underlying causes of the data at
the current time step in the context of past data sequences. This is an obvious advantage and
is very important particularly for real time processing and data analytic tasks. The Spatial
Pooling (SP) andTemporal Pooling (TP) technique for temporal classification are presented in
the following sub-sections (Section 2.1 and 2.2).

2.1 HTM Spatial pooling
In HTM, spatial pooling is performed using the notion of SDRs followed by competitive
Hebbian learning rules, a Homeostatic excitability control, and an overlapping mechanism for
deriving candidate orwinner SDRpatterns via inhibition [24]. SDRs are formed byactivating or
deactivating a set of potential synapses or connectingneural links. These synapses are grouped
into a set of mini-columns and are spread out in a hypercube based on a set of predefined rules.

Consider a group of mini-columns with a set of potential connecting logical synapses or
neurons; these potential connections may be initialized accordingly as:

Πi ¼
�
j
��I�xj; xci ; γ� & Zij < ρ

�
(1)

where, j 5 HTM neuron location index in the mini-column, i 5 mini-column index,
xj 5 location of the jth input neuron (synapses) in the input space, xci 5 location centre of
potential neurons (synapses) of ith mini-column in a hypercube of input space, γ 5 edge
length of xj, ρ 5 fraction of inputs within the hypercube of input space that are potential
connections, Zij 5 represents a uniformly distributed random number between 0 and 1,
I 5 an indicator function

The indicator function is typically described by Eq. (2):

I
�
xj; x

c
i ; γ

� ¼
(
1; if xj ⊂ xci

0; otherwise
(2)

A set of connected synapses are described by a binary matrix, W, which is formulated by
conditioning the synapses to a permanence activation rule as:

Wij ¼
�
1; if Dij ≥ θc
0; otherwise

(3)

where, Dij 5 independent and identically distributed (i.i.d) dendrite synaptic permanence
values from the jth input to the ith mini-column, θc 5 synaptic permanence threshold

The i.i.d synapse permanence values are described by Eq. (4) as:

Dij ¼
�
Uð0; 1Þ; if j∈Πi

0; otherwise
(4)

Where a natural topology exists, neighbourhood mini-columns may be inhibited in
accordance to the relation given in Eq. (5) otherwise a global inhibition parameter is
simply used.

Ni ¼
�
jj�� yi � yj

�� < w; j≠ i
�

(5)

where, yi 5 is the ith HTM-SP mini-column, yj 5 is the jth HTM-SP mini-column, i,j5 mini-
column indexes, ∅ 5 inhibition radius control parameter
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For creating associations with input patterns, feed-forward inputs to each of the
generative spatial mini-columns are computed using amatching technique called the overlap;
this concept is diagrammatically illustrated in Figure 2. The overlap is computed as:

oi ¼ bi
X
j

Wijzj (6)

where, bi 5 is a positive boost factor for exciting each HTM-SP mini-column, zj 5 input
pattern vector seen by the generative HTM neuron

Using Eq. (6), we can calculate the activation of each SP mini-column as:

ai ¼
�
1; if oi ≥ZðVi; 100� sÞ & oi ≥ θstim
0; otherwise

(7)

Vi ¼ foijj∈Nig (8)

where, s5 target activation density (sparsity), Z5 a percentile function, θstim 5 a stimulus
threshold

The HTM-SP uses a learning rule inspired by competitive Hebbian learning for
reinforcing dendrite permanence values [19,24]. The learning rule can be calculated from the
formula given in Eq. (9):

ΔDij ¼ pþDij+A
t−1 � p−Dij+

	
1� At−1



(9)

where, pþ 5 positive permanence value increment, p� 5 negative permanence value
increment, At�1 5 activation state at time step, t

Finally, boost updating in HTM-SP follows the homeostatic excitability control
mechanism comparable to that observed in cortical neurons [25]. Boosting is accomplished
in HTM-SP using the following model equations (Eq. 10–Eq. 12):

aiðtÞ ¼ ðT � 1Þ*aiðt � 1Þ þ aiðtÞ
T

(10)

< aiðtÞ >¼ 1

jNij
X
j∈Ni

aiðtÞ (11)

bi ¼ e−βða
−
iðtÞ−< a− iðtÞ>Þ (12)

where, ai 5 time averaged activation over the last T SDR inputs, T 5 an integer number
denoting the number of Monte Carlo trials to obtain a reasonable activation estimate. aiðtÞ5
the current activity of the ith mini-column at time step t. β 5 a positive parameter that
controls the strength of the adaptation effect.

Figure 2.
An Illustrative concept
of Overlap in an HTM-
SP; Source: Ahmad and

Hawkins [15].
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As mentioned in Ref. [24], such calculations have been used in previous models of
homeostatic synaptic plasticity as in [26,27].

2.2 Temporal classifier
In the proposed HTM system, feed-back associations are built from the HTM Spatial Pooler
(SP) SDRs using a temporal overlap classifier. The Temporal classifier uses the overlap
technique which is similar to Eq. 6; however predictions are made by performing a match
between a set of past SDR observations (used as context) and the current SDR observation.
The temporal overlaps through time are obtained using Eq. (13):

ojt ¼
X
jt

W sp
jt
W sp

ðk�NcÞ:jt ; Nc < k < jt; (13)

where, Nc 5 Number of past sample SDRs used as context, k 5 size of the temporal
aggregated (bivariate) sequence through time, jt 5 temporal aggregation index number,
Wsp

jt
5 bivariate SDRs after temporal aggregation.

2.2.1 Temporal aggregation of HTM-SP SDRs
Temporal aggregation is used in the HTM-SP to build a cause-and-effect data sequence from
the SDRs formed initially and then used for an overlapping temporal classification (OTC);
such sequences have been assumed to possess a bivariate representational requirement –
indeed HTM using an OTC scheme has been proven to be very effective in certain very
advanced tasks such as drug discovery [28]. In HTM-SP, addingmore variables increases the
degree-of-freedom for making effective overlap matches. The temporal aggregation
procedure used in the forecast analysis is as follows:

Step 1: Form a single-column vector matrix of length 1:N having a with a width of 1,
where N represents the number of sampled sequences SDRs obtained from the HTM-SP
stage. The elements in this matrix contain the indexes for temporal aggregation.

Step 2: For each element in thematrix formed in Step 1 greater than 1, perform amodulus
operation such that if a remainder exists for the considered element we skip that element,
otherwise we select the element; this operation results in single-column vector matrix of
length approximately equal to 1:N/2. The elements in this matrix contain the set of even
indexes in the matrix obtained from Step1 at time instance, t. We call this set At(1).

Step 3: For all elements in the set At(1), form a concatenation of At(1) with At(1) 1-step
behind as {At(1) At-1(1)}; this concatenation represent the temporal aggregator index set.
We call this set of indexes At(agg).

Step 4:UsingAt(agg) as index sequence, extract SDR patterns obtained from the HTM-SP
stage in a temporal aggregated fashion and then perform overlap temporal classification
through time.

3. Experiments and results using electrical time series load data
The proposed systems architecture for day-ahead load predictions is shown in Figure 3. In
this architecture, the encoder transforms real world input data signals into a binary
representation suitable for spatial pooling; then the Hierarchical Temporal Memory Spatial
Pooler (HTM-SP) forms sparse distributed representations (SDRs) of the binary
representations using the generative procedure described in Section 2.1. The SDRs are

ACI
17,2

270



temporally aggregated and predicted using the overlapping temporal classification (OTC)
scheme described in Section 2.2.

TheMeanAbsolute Percentage Error (MAPE) was chosen as themetric for evaluating the
performance of the HTM-SP system. The use of MAPE is due to its insensitivity to outliers so
it presents an unbiased metric when compared to other metrics such as Mean Squared Error
(MSE) or absolute errors which exhibit large fluctuations in values for increasing/decreasing
forecast values.

Other metrics for monitoring the performance of the HTM-SP include the skewness and
the kurtosis. The skewness measures the asymmetry that exist in the error distribution
around its mean; if the skewness value is negative then the error distribution is negatively
skewed otherwise it is positively skewed. A skewness of zero implies that the error response
is perfectly symmetrical and follows a normal distribution.

The kurtosis on the other hand is used to quantify the outlier prone behavior of the error
distribution with respect to a normal distribution which is defined as having a kurtosis equal
to 3. A kurtosis greater than 3 indicates that the error distribution is more outlier prone; if it is
less than 3, it is said to be less outlier prone. The skewness and kurtosis functions in
MATLAB were used for further evaluation of the MAPE error distribution.

The experimental tests were conducted using six different Electrical Time Series Load
datasets:

The first two datasets comes from the Eunite Competition datasets organized by the
Centre for Intelligent Technology Slovakia; it includes power readings for the years 1997 and
1998 containing a daily MW power reading for 24 h and recorded at 30 min intervals; special
days such as Holidays and environmental parameters such as Temperature are also
provided. The datasets can be obtained from (http://eunite.org). This dataset is open source
and has also been used earlier in [1].

The third dataset is based on electric load time series dataset of Polish Power System from
2002 to 2004 [29]; this time series is similar to that of the Eunite competition dataset but with
special labels for workdays or weekends.

The next three datasets were obtained from three different electricity markets – the
German, French and British electricity markets; these datasets were used to investigate the
robustness of the proposed approach. These datasets can be obtained from https://open-
power-system-data.org and comprises hourly (60 min interval) total load in MW of electricity
consumption for the years 2010–2013.

The core parameters used for the HTM-SP simulations are provided in the Appendix. A
brief description of the parameters that motivated their use has also being provided in a
subsequent sub-section (sub-Section 3.2). Source codes for the simulations performed in this
section can be obtained from: https://www.mathworks.com/matlabcentral/fileexchange/68442.

3.1 Data forecasting task
For the experiments with HTM, we have only considered the maximum daily (or hourly)
power reading i.e. we take the maximum power for the 24-hour duration of each day; the task
required here is to continually predict n-days ahead, the power demand of the power system

Encoder Data OTC Temporal 

Aggregator 

Binary signals 
SDR SDR 

Predictions 
Classification 

HTM-SP 
Figure 3.

System for Spatial-
Temporal Predictions
using the HTM-SP.

Hierarchical
temporal

memory spatial
pooler

271

http://eunite.org/
https://open-power-system-data.org/
https://open-power-system-data.org/
https://www.mathworks.com/matlabcentral/fileexchange/68442


network based on the data provided. The use of only the maximum power demands makes it
difficult for the HTM-SP to make predictions but also has the advantage of dimensionality
reduction as the data is then transformed to a univariate time series; we reduce this difficulty
by using the temporal aggregation procedure earlier introduced in Section 2 (Sub-section
2.2.1) to form a bivariate distribution for the HTM-SP to learn from.

3.2 Motivation and description of the core HTM-SP system parameters
The core HTM-SP system parameters motivate the analysis of the experimental data
presented in this section. The parameters are described succinctly in the following paragraphs.

3.2.1 Number of columns. The number of columns defines the learning extent of the
cortical cells used during sensory signal processing. The higher this number, the more likely
it is for the HTM-SP system to obtain amatch and themore accurate will be the prediction but
at the price of higher computational runtimes. Typical values can be as high as 1024 columns
or more but a value of 250 was found sufficient to reduce the computational expense.

3.2.2 Initial Synaptic Permanence. This parameter defines how much permanence should
be assigned to a cortical neuron prior to HTM-SP processing. By setting this value, we give
the HTM-SP system a starting point to begin the wonderful process of activation or
deactivation of cortical neurons or cells.

3.2.3 Reduct factor. This is used to adjust the dendritic segment activation threshold to a
suitable value. This activation threshold is a function of the overlap metric earlier described
in Section 2. Once the activation threshold is met, the permanence’s corresponding to the
respective dendrite segment is activated and a connection is made to the receiving memory
space which is stored in Random Access Memory (RAM).

3.2.4 Boost factor. The boost factor simply defines how much initial boost is used for
adaptation (refer to Eq. 12 Section 2, sub-section 2.1). Boosting ensures that sufficient support
is given to weaker cortical cells in order to excite them to participate in the inhibition phase of
the learning process.

3.2.5 Synapse permanence increment/decrement. This is a reward/punish scheme used to
support (reinforce) cells or cortical neurons that do well during the update phase of the
learning phase and weaken cells that perform poorly; if a cell contributes to learning then its
permanence value is incremented otherwise it is decremented.

3.2.6 Number of past sequences used as context. This parameter plays the very important
role of feedback matching or prediction. As mentioned earlier, the HTM-SP system is
designed to perform feed-forward and feedback associations. It is this context parameter that
makes the feedback function possible. Without providing context, it will be difficult if it not
impossible for the HTM-SP to make machine intelligent predictions.

3.3 Experimental results using the Eunite datasets
The mean absolute percentage error (MAPE) values for single day-ahead forecasts using the
HTM-SP on the Eunite datasets are given in Figures 4 and 5. This represent a fluctuation of
about 0.05% to 0.10% (Figure 4) for the Eunite 1997 competition data and 0.04% to 0.09% for
the Eunite 1998 competition data.

3.4 Experimental results using the Polish dataset
In this section the MAPE values are reported for different n-step forecasts. In the first
instance, MAPE values for 1 day-ahead HTM-SP predictions are reported in Figure 6. This
represents a fluctuation of about 0.05%–0.35%.

In the second instance, MAPE values for 7 days-ahead forecast are as shown in Figure 7;
the MAPE values fluctuate from about 0.05 to 0.35.
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In Tables 1 and 2, the results showing the maximum value of HTM-SP MAPE for the case of
7 day-ahead and 1 day-ahead forecast of Polish electrical load times series data is compared to
that reported in Ref. [5] and Ref. [29] respectively using other techniques; this comparative
report clearly shows that the HTM-SP will outperform all these other algorithms.

0 20 40 60 80 100 120 140 160 180
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Sequence points

M
ea

n 
A

bs
ol

ut
e 

P
er

ce
nt

 E
rro

r

0 20 40 60 80 100 120 140 160 180
0.04

0.05

0.06

0.07

0.08

0.09

0.1
M

ea
n 

A
bs

ol
ut

e 
P

er
ce

nt
 E

rro
r

Sequence points

Figure 5.
Error Performance

using the 1998 Eunite
competition dataset for
1 day-ahead forecast.

Figure 4.
Error Performance

using the 1997 Eunite
competition dataset for
1 day-ahead forecast.

Hierarchical
temporal

memory spatial
pooler

273



3.5 Experimental results using datasets from the German, French and British markets
In this section, the meanMAPE, skew, and kurtosis values are reported for each market and for
each year in consideration inTables 3–5 respectively.These values are obtained using theHTM-
SP default parameters provided in the Appendix used earlier for single day-ahead forecasts.
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Figure 7.
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4. Discussions
In this research, the HTM Spatial Pooler (SP) with an overlapping temporal classification
(OTC) technique has been employed to the problem of short-term load forecasting.
Experiments have been performed using electrical load time series datasets from the Eunite
Competition, the Polish Power System and datasets from three well known electricity
markets – the German, English and British power markets. In the whole, the results of these

Technique MAPE value (%)

ANN 1.44
ARIMA 1.82
ES 1.66
Naı€ve 3.43
HTM-SP (proposed) ≈0.37

Technique MAPE value (%)

RF 1.16
CART 1.42
Fuzzy CART 1.37
ARIMA 1.91
ES 1.76
ANN 1.14
HTM-SP (proposed) ≈0.36

Electricity Market Skew2010 Skew2011 Skew2012 Skew2013

Germany 0.7056 0.4465 1.0335 0.2023
France 0.8928 �0.8803 1.0666 �0.4322
Great Britain 1.3735 �0.6409 �0.9399 0.1166

Electricity Market MAPE2010 MAPE2011 MAPE2012 MAPE2013

Germany 0.1772 0.2260 0.1848 0.2366
France 0.3895 0.3604 0.3118 0.4975
Great Britain 0.2208 0.1477 0.1594 0.2077

Electricity Market Kurtosis2010 Kurtosis2011 Kurtosis2012 Kurtosis2013

Germany 02.4995 03.5009 04.1467 03.5330
France 02.2724 02.3412 02.9740 02.5534
Great Britain 23.1214 02.7369 02.1707 03.7979

Table 1.
Reported MAPE

values for 7 day-ahead
forecasts using Polish
dataset and different
techniques in Ref [5]
compared with the
proposed HTM-SP.

Table 2.
Reported MAPE

values for 1 day-ahead
forecasts using Polish
dataset and different
techniques in Ref [29]

compared with the
proposed HTM-SP; the
values in Ref. [29] are

due to mean value
predictions for the
months of January

and July.

Table 4.
Skew for 1 hour-ahead

electricity load time
series forecast of the
German, French and

Great British
Electricity markets
from 2010 to 2013.

Table 3.
MAPE Performance
for 60 min (1-hour

ahead) electricity load
time series forecast of
the German, French
and Great British

Electricity markets
from 2010 to 2013.

Table 5.
Kurtosis for 1 hour-

ahead electricity load
time series forecast of
the German, French
and Great British

Electricity markets
from 2010 to 2013.
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experiments indicate that the HTM-SP can continually predict the maximum load demand
giving reasonable error accuracies. However, large fluctuations in error valuesmay result due
to the effect of seasonality – these effects leads to the peaks and troughs noticed in theMAPE
error response plots in Section 3 but they are not so critical as they fall under a much lower
level than other techniques reported in the literature (see Table 1).

The MAPE performance of the German, French and British electricity markets, are as
shown in Table 3. These values seem to be much lower for the German and British electricity
markets than the French. The measured error performances are also highly positively
skewedwith kurtosis valuesmuch lower than 3 as indicated in Tables 4 and 5 respectively. In
particular, the skewness is negative for only the French and British power markets for the
years 2011, 2012 and 2013 while the kurtosis values are all below 3 for the French market
indicating good outlier rejection capability of the HTM-SP for this class of datasets. The
kurtosis of the Great British power market is very high - a value of about 23 for the year 2010
indicating that the error distribution is largely variable; however, for the year 2013, the
kurtosis is not so far away from the base value of 3. Also, with the exception of the year 2010,
the kurtosis is greater than base value for the German market. Thus, the HTM outlier
rejection capability may be compromised due to error variations in some of the datasets
considered but the deviations are generally not so critical.

5. Conclusion and future directions
Machine intelligence algorithms such as the Hierarchical Temporal Memory (HTM) based on
the Cortical Learning Algorithms, presents an opportunity for industry and academic
researchers in power systems to explore the possibility of using more responsive neural
models for power demand forecasting. HTM can effectively learn patterns from the data
using a continual learning spatial-temporal structured algorithm and help predict the load
time series of a power system. This paper has focused on the forecasting in the short term of
electrical time series loads using the HTM spatial pooler (HTM-SP) as an online (continual)
learning prediction system and classifier. Simulation results using the HTM-SP system
showed that it can outperform most existing artificial intelligence (AI)/neural techniques for
the task of forecasting daily and hourly load demand using some reported datasets in the
literature. This improvement may be attributed to the continual learning processes that occur
within the HTM-SP system.

It is therefore recommended that short-term load forecasting algorithms use techniques
that encourage continual learning.

However, the HTM-SP predictions may be compromised due to large variations in data
which in turn is responsible for the high number of outliers. Thus, it is also recommended to
further study the outlier rejection capability of the HTM-SP on novel datasets and devise
means for handling them.

Future work should also focus on adapting HTM to conventional algorithms such as
Genetic Programming to make the results obtained by its prediction mechanism model
expressive. Other neuro-biological continual learning prediction techniques with simpler
architecture should also be investigated in the context of forecasting time series.

Also, further real time experimentation may be necessary including real-time
implementations to further validate this novel machine intelligence technique and possible
variants for power systems load forecasting.
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A. Appendix
See (Table 6).
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Parameter Value

Number of Columns 250
Initial Synaptic Permanence 0.21
Reduct factor 2
Boost factor 100
Synapse permanence increment 0.1
Synapse permanence decrement 0.1
Number of past sequences used as Context 2

Table 6.
HTM-SP Parameters.
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