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Abstract
Independent component analysis (ICA) is a widely-used blind source separation technique. ICA has been
applied to many applications. ICA is usually utilized as a black box, without understanding its internal details.
Therefore, in this paper, the basics of ICA are provided to show how it works to serve as a comprehensive
source for researchers who are interested in this field. This paper starts by introducing the definition and
underlying principles of ICA. Additionally, different numerical examples in a step-by-step approach are
demonstrated to explain the preprocessing steps of ICA and the mixing and unmixing processes in ICA.
Moreover, different ICA algorithms, challenges, and applications are presented.
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1. Introduction
Measurements cannot be isolated from a noise which has a great impact onmeasured signals.
For example, the recorded sound of a person in a street has sounds of footsteps, pedestrians,
etc. Hence, it is difficult to record a cleanmeasurement; this is due to (1) source signals always
are corrupted with a noise, and (2) the other independent signals (e.g. car sounds) which are
generated from different sources [31]. Thus, the measurements can be defined as a
combination of many independent sources. The topic of separating these mixed signals is
called blind source separation (BSS).The term blind indicates that the source signals can be
separated even if little information is known about the source signals.

One of the most widely-used examples of BSS is to separate voice signals of people
speaking at the same time, this is called cocktail party problem [31]. The independent
component analysis (ICA) technique is one of the most well-known algorithms which are used
for solving this problem [23]. The goal of this problem is to detect or extract the sound with a
single object even though different sounds in the environment are superimposed on one
another [31]. Figure 1 shows an example of the cocktail party problem. In this example, two
voice signals are recorded from two different individuals, i.e., two independent source signals.
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Moreover, two sensors, i.e., microphones, are used for recording two signals, and the outputs
from these sensors are two mixtures. The goal is to extract original signals1 from mixtures
of signals. This problem can be solved using independent component analysis (ICA)
technique [23].

ICA was first introduced in the 80s by J. H�erault, C. Jutten and B. Ans, and the authors
proposed an iterative real-time algorithm [15]. However, in that paper, there is no theoretical
explanation was presented and the proposed algorithm was not applicable in a number of
cases. However, the ICA technique remained mostly unknown till 1994, where the name of
ICA appeared and introduced as a new concept [9]. The aim of ICA is to extract useful
information or source signals from data (a set of measured mixture signals). These data can
be in the form of images, stockmarkets, or sounds. Hence, ICAwas used for extracting source
signals in many applications such as medical signals [7,34], biological assays [3], and audio
signals [2]. ICA is also considered as a dimensionality reduction algorithm when ICA can
delete or retain a single source. This is also called filtering operation, where some signals can
be filtered or removed [31].

ICA is considered as an extension of the principal component analysis (PCA) technique
[9,33]. However, PCA optimizes the covariance matrix of the data which represents second-
order statistics, while ICA optimizes higher-order statistics such as kurtosis. Hence, PCA
finds uncorrelated components while ICA finds independent components [21,33]. As a
consequence, PCA can extract independent sources when the higher-order correlations of
mixture data are small or insignificant [21].

ICA has many algorithms such as FastICA [18], projection pursuit [21], and Infomax [21].
The main goal of these algorithms is to extract independent components by (1) maximizing
the non-Gaussianity, (2) minimizing the mutual information, or (3) using maximum likelihood
(ML) estimation method [20]. However, ICA suffers from a number of problems such as over-
complete ICA and under-complete ICA.

Many studies treating the ICA technique as a black box without understanding the
internal details. In this paper, in a step-by-step approach, the basic definitions of ICA, and
how to use ICA for extracting independent signals are introduced. This paper is divided into
eight sections. In Section 2, an overview of the definition of the main idea of ICA and its
background are introduced. This section begins by explaining with illustrative numerical
examples how signals are mixed to form mixture signals, and then the unmixing process is
presented. Section 3 introduces with visualized steps and numerical examples two
preprocessing steps of ICA, which greatly help for extracting source signals. Section 4
presents principles of how ICA extracts independent signals using different approaches such
as maximizing the likelihood, maximizing the non-Gaussianity, or minimizing the mutual
information. This section explains mathematically the steps of each approach. Different ICA
algorithms are highlighted in Section 5. Section 6 lists some applications that use ICA for
recovering independent sources from a set of sensed signals that result from a mixing set of

Figure 1.
Example of the cocktail

party problem. Two
source signals (e.g.
sound signals) are

generated from two
individuals and then

recorded by two
sensors, e.g.,

microphones. Two
microphones mixed the

two source signals
linearly. The goal of

this problem is to
recover the original

signals from the mixed
signals.
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source signals. In Section 7, the most common problems of ICA are explained. Finally,
concluding remarks will be given in Section 8.

2. ICA background
2.1 Mixing signals
Each signal varies over time and a signal is represented as follows, si ¼ fsi1; si2; . . . ; siNg,
where N is the number of time steps and sij represents the amplitude of the signal si at
the jth time.2 Given two independent source signals3 s1 ¼ fs11; s12; . . . ; s1Ng and
s2 ¼ fs21; s22; . . . ; s2Ng (see Figure 2). Both signals can be represented as follows:

S ¼
�
s1
s2

�
¼

� ðs11; s12; . . . ; s1N Þ
ðs21; s22; . . . ; s2N Þ

�
(1)

where S∈Rp3N represents the space that is defined by source signals and p indicates the
number of source signals.4 The source signals (s1 and s2) can be mixed as follows,
x1 ¼ a3 s1 þ b3 s2, where a and b are the mixing coefficients and x1 is the first mixture
signal. Thus, the mixture x1 is the weighted sum of the two source signals (s1 and s2).
Similarly, another mixture ðx2Þ can be measured by changing the distance between the
source signals and the sensing device, e.g. microphone, and it is calculated as follows,
x2 ¼ c3 s1 þ d3 s2, where c and d are mixing coefficients. The two mixing coefficients
a and b are different than the coefficients c and d because the two sensing devices which are
used for sensing these signals are in different locations, so that each sensor measures a
different mixture of source signals. As a consequence, each source signal has a different
impact on output signals. The two mixtures can be represented as follows:

X ¼
�
x1

x2

�
¼

�
as1 þ bs2
cs1 þ ds2

�
¼

�
a b

c d

��
s1
s2

�
¼ As (2)

where X∈Rn3N is the space that is defined by the mixture signals and n is the number of
mixtures. Therefore, simply, the mixing coefficients (a; b; c, and d) are utilized for
transforming linearly source signals from S space to mixed signals in X space as follows,
S→X : X ¼ AS, where A∈Rn3p is the mixing coefficients matrix (see Figure 2) and it is
defined as:

Figure 2.
An illustrative example
of the process of
mixing signals. Two
source signals are
mixed linearly by the
mixing matrix ðAÞ to
form two new mixture
signals.
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A ¼
�
a b

c d

�
(3)

2.1.1 Illustrative example. The goal of this example is to show the properties of source and
mixture signals. Given two source signals s1 ¼ sinðaÞ and s2 ¼ r− 0:5, where a is in the
range of [1,30] with time step 0.05 and r indicates a random number in the range of [0,1].
Figure 3 shows source signals, histograms, and scatter diagram of both signals. As shown,
the two source signals are independent and their histograms are not Gaussian. The scatter
diagram in Figure 3(e) shows how the two source signals are independent, where each point
represents the amplitude of both source signals. Figure 4 shows themixture signals with their
histograms and scatter diagram. As shown, the histograms of both mixture signals are
approximately Gaussian, and the mixtures are not independent. Moreover, the mixture
signals are more complex than the source signals. From this example, it is remarked that the
mixed signals have the following properties:

1. Independence: if the source signals are independent (as in Figure 3(a and b)), their
mixture signals are not (see Figure 4(a and b)). This is because the source signals are
shared between both mixtures.

Figure 3.
An illustrative example
for two source signals.

(a) and (b) first and
second source signals

(s1 and s2), (c) and
(d) histograms of s1
and s2, respectively,
(e) scatter diagram of
source signals, where

s1 and s2 represent the
x-axis and y-axis,

respectively.
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2. Gaussianity: the histogram of mixed signals are bell-shaped histogram (see
Figure 4e., Gaussian or normal. This property can be used for searching for non-
Gaussian signals within mixture signals to extract source or independent signals. In
other words, the source signals must be non-Gaussian, and this assumption is a
fundamental restriction in ICA. Hence, the ICA model cannot estimate Gaussian
independent components.

3. Complexity: It is clear from the previous example that mixed signals are more
complex than source signals.

From these properties we can conclude that if the extracted signals from mixture signals are
independent, have non-Gaussian histograms, or have low complexity than mixture signals;
then these signals represent source signals.

2.1.2 Numerical example: Mixing signals. The goal of this example5 is to explain how
source signals are mixed to form mixture signals. Figure 5 shows two source signals s1 and
s2 which form the space S. The two axes of the S space (s1 and s2) represent the x-axis
and y-axis, respectively. Additionally, the vector with coordinates ð 1 0 ÞT lie on the axis s1
in S and hence simply, the symbol s1 refers to this vector and similarly, s2 refers to the vector
with the following coordinates ð 0 1 ÞT. During themixing process, thematrixA transforms
s1 and s2 in the S space to s

0
1 and s

0
2, respectively, in the X space (see Eqs. (4) and (10)).

Figure 4.
An illustrative example
for two mixture signals
(a) and (b) first and
second mixture signals
x1 and x2, respectively,
(c) and (d) the
histogram of x1 and x2,
respectively, (e) scatter
diagram of both
mixture signals, where
x1 and x2 represent the
x-axis and y-axis,
respectively.
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s
0
1 ¼ As1 ¼

�
a b

c d

��
1
0

�
¼

�
a

c

�
(4)

s
0
2 ¼ As2 ¼

�
a b

c d

��
0
1

�
¼

�
b

d

�
(5)

In our example, assume that the mixing matrix is as follows, A ¼
�
1 2
1 − 1

�
. Given two

source signals are as follows, s1 ¼ ð 1 2 1 2 Þ and s2 ¼ ð 1 1 2 2 Þ. These two
signals can be represented by four points which are plotted in the S space in black color (see
Figure 5). The coordinates of these points are as follows:�

1
1

�
;

�
2
1

�
;

�
1
2

�
;

�
2
2

�
(6)

The new axes in theXspace (s
0
1 and s

0
2) are plotted in solid red and blue color, respectively (see

Figure 5) and and they can be calculated as follows:

s
0
1 ¼ A

�
1
0

�
¼

�
1 2
1 �1

��
1
0

�
¼

�
1
1

�
(7)

s
0
2 ¼ A

�
0
1

�
¼

�
1 2
1 �1

��
0
1

�
¼

�
2

�1

�
(8)

The four points are transformed in the X space; these points are plotted in a red color in
Figure 5; and the values of these new points are

(a)

Figure 5.
An example of the

mixing process. The
mixing matrix A

transforms the two
source signals (s1 and
s2) in the S space to (s

0
1

and s
0
2) in the mixture
space X. The two

source signals can be
represented by four

points (in black color)
in the S space. These

points are also
transformed using the
mixing matrix A into

different four points (in
red color) in the X

space. Additionally, the
vectors w1 and w2 are

used to extract the
source signal s1 and s2,
and they are plotted in

dotted red and blue
lines, respectively. w1

and w2 are orthogonal
on s

0
2 and s

0
1,

respectively. A color
version of this figure is

available online.
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�
3
0

�
;

�
4
1

�
;

�
5

�1

�
;

�
6
0

�
(9)

Assumed the second source s2 is silent/OFF; hence, the sensors record only the signal that is

generated from s1 (see Figure 6(a)). The mixed signals are laid along s
0
1 ¼ ð a c ÞT and the

distribution of the projected samples onto s
0
1 are depicted in Figure 6(a). Similarly, Figure 6(b)

shows the projection onto s
0
2 ¼ ð b d ÞT when the first source is silent; this projection

represents the mixed data. It is worth mentioning that the new axes s
0
1 and s

0
2 need not to be

orthogonal on the s1 and s2, respectively. Figure 5 is the combination of Figure 6(a) and (b)
when both source signals are played together and the sensors measure the two signals
simultaneously.

A related point to consider is that the number of red points in Figure 6(a) which represent

the projected points onto s
0
1 is three while the number of original points was four. This can be

interpreted mathematically by calculating the coordinates of the projected points onto s
0
1. For

example, the projection of the first point ð 1 1 ÞT is calculated as follows,

s
0
1ð 1 1 ÞT ¼

�
1
1

�
ð 1 1 ÞT ¼ 2. Similarly, the projection of the second, third, and fourth

points are 3; 3, and 4, respectively. Therefore, the second and third samples were projected

onto the same position onto s
0
1. This is the reason why the number of projected points is three.

2.2 Unmixing signals
In this section, the unmixing process for extracting source signals will be presented. Given a
mixingmatrixA, independent components can be estimated by inverting the linear system as
in Eq. (2), but we know neither S nor A; hence, the problem is considerably more difficult.
Assume that the matrix (A) is known; hence, source signals can be extracted. For simplicity,
we assume that the number of sources and mixture signals are the same and hence the
unmixing matrix is a square matrix.

Given two mixture signals x1 and x2. The aim is to extract source signals, and this can be
achieved by searching for unmixing coefficients as follows:

y1 ¼ αx1 þ βx2

y2 ¼ γx1 þ δx2
(10)

Figure 6.
An example of the
mixing process. The
mixing matrix A
transforms source
signals as follows: (a) s1
is transformed from S
space to s

0
1 ¼ ða; cÞT

(solid red line) which
is one of the axes of
the mixture space X.
The red stars represent
the projection of the
data points onto s

0
1.

These red stars
represent all samples
that are generated from
the first source s1. (b) s2
is transformed from S
space to s

0
2 ¼ ðb; dÞT

(solid blue line) which
is one of the axes of the
mixture space X. The
blue stars represent
the projection of the
data points onto s

0
2.

These blue stars
represent all samples
that are generated from
the second source s2.
A color version of this
figure is available
online.
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where α; β; γ, and δ represent unmixing coefficients, which are used for transforming the

mixture signals into a set of independent signals as follow, X→Y : Y ¼ WTX, where
W∈Rn3p is the unmixing coefficients matrix as shown in Figure 7. Simply we can say that
the first source signal, y1, can be extracted from the mixtures (x1 and x2) using two unmixing
coefficients (α and β). This pair of unmixing coefficients defines a point with coordinates

ðα; βÞ, where w1 ¼ ð α β ÞT is a weight vector (see Eq. (11)). Similarly, y2 can be extracted

using the two unmixing coefficients γ and δ which define the weight vector w2 ¼ ð γ δ ÞT
(see Eq. (11))

y1 ¼ αx1 þ βx2 ¼ wT
1 X

y2 ¼ γx1 þ δx2 ¼ wT
2 X

(11)

W ¼ ðw1 w2 ÞT is the unmixing matrix and it represents the inverse of A. The unmixing
process can be achieved by rotating the rows ofW. This rotation will continue till each row in
W (w1 or w2) finds the orientation which is orthogonal on other transformed signals. For
example, in our example, w1 is orthogonal on s

0
2 (see Figure 5). The source signals are then

extracted by projecting mixture signals onto that orientation.
In practice, changing the length or orientation of weight vectors has a great influence on

the extracted signals (Y). This is the reason why the extracted signals may be not identical to
original source signals. The consequences of changing the length or orientation of the weight
vectors are as follows:

� Length: The length of the weight vectorw1 is jw1j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

p
, and assume that the

length of w1 is changed by a factor λ as follows, λjw1j ¼ λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þ β2

p
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðλαÞ2 þ ðλβÞ2
q

. The extracted signal or the best approximation of s1 is denoted by

y1 ¼ wT
1 X and it is estimated as in Eq. (12). Hence, the extracted signal is a scaled

version of the source signal and the length of the weight vector affects only the
amplitude of the extracted signal.

y1 ¼
�
λwT

1

�
X ¼ ðλαÞx1 þ ðλβÞx2

¼ λðαx1 þ βx2Þ ¼ λs1
(12)

� Orientation: As mentioned before, the source signals s1 and s2 in the S space are

transformed to s
0
1 and s

0
2 (see Eqs. (4) and (5)), respectively, where s

0
1 and s

0
2 form the

mixture spaceX. The signal ðs1Þ is extracted only ifw1 is orthogonal to s
0
2 and hence at

different orientations, different signals are extracted. This is because the inner product

Figure 7.
An illustrative example

of the process of
extracting signals.
Two source signals

(y1 and y2) are
extracted from two

mixture signals (x1 and
x2) using the unmixing

matrix W.

Independent
component

analysis

229



for any orthogonal vectors is zero as follows, y1 ¼ wT
1 X ¼ wT

1 AS ¼ wT
1 ð s

0
1 s

0
2
Þ,

wherew1s
0
2 ¼ 0 becausew1 is orthogonal to s

0
2, and the inner product ofw1 and s

0
1 is

as follows, wT
1 s

0
1 ¼ jw1j

��s0
1

��cosθ ¼ jw1jjAs1jcosθ ¼ ks1, where θ is the angle

between w1 and s
0
1 as shown in Figure 5, and k is a constant. The value of k

depends on the length of w1 and s
0
1 and the angle θ. The extracted signal will be as

follows, y1 ¼ wT
1 ð s

0
1 s

0
2
Þ ¼ ðwT

1 s
0
1 þwT

1 s
0
2Þ ¼ ks1. The extracted signal (ks1) is a

scaled version from the source signal (s1), and ks1 is extracted from X by taking the

inner product of all mixture signals with w1 which is orthogonal to s
0
2. Thus, it is

difficult to recover the amplitude of source signals.

Figure 8 displays the mixing and unmixing steps of ICA. As shown, the first mixture signal
x1 is observed using only the first row inAmatrix, where the first element in x1 is calculated
as follows, x11 ¼ fa11s11 þ a12s21 þ . . .þ a1psp1g. Moreover, the number of mixture signals
and the number of source signals are not always the same. This is because, the number of
mixture signals depends on the number of sensors. Additionally, the dimension of W is not
agree withX; hence,W is transposed, and the first element in the first extracted signal (y1) is
estimated as follows, y11 ¼ fw11x11 þ w21x21 þ . . .þ wn1xn1g. Similarly all the other
elements of all extracted signals can be estimated.

2.2.1 Numerical examples: Unmixing signals. The goal of this example is to extract
source signals which are mixed in the numerical example in Section 2.1.2. The matrixW is

the inverse ofAand the value ofW isW ¼
0
BB@

1

3

2

3

1

3

− 1

3

1
CCA, where the vectorw1 inW is orthogonal

to s
0
2, i.e., the inner product

�
1

3

2

3

�
ð 2 − 1 ÞT ¼ 0, and similarly, the vector w2 is

orthogonal to s
0
1 (see Figure 5). Moreover, the source signal s1 is extracted as follows,

s1 ¼ wT
1 X ¼ �

1

3

2

3

��
1 2
1 – 1

� ¼ �
1
0

�
, and similarly, s2 is extracted as follows,

Figure 8.
Block diagram of the
ICA mixing and
unmixing steps. aij is
the mixing coefficient
for the ith mixture
signal and jth source
signal, and wij is the
unmixing coefficient
for the ith extracted
signal and jth mixture
signal.
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s2 ¼ wT
2 X ¼ �

1

3
–
1

3

��
1 2
1 – 1

� ¼ �
0
1

�
. Hence, the original source signals are extracted

perfectly. This is because k≈ 1 and hence according to Eq. (12) the extracted signal is
identical to the source signal. As mentioned before, the value of k is calculated

as follows, k ¼ jw1j
��s0

1

��cosθ, and the value of jw1j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð13Þ2 þ ð23Þ2

q
¼

ffiffi
5

p
3 , and the value

of
��s0

1

�� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1Þ2 þ ð1Þ2

q
¼ ffiffiffi

2
p

. The angle between s
0
1 and the s1 axes is 458 because

s
0
1 ¼ ð 1 1 ÞT; and similarly, the angle betweenw1 and s1 is cos

−1ð 1=3ffiffi
5

p
=3
Þ ¼ cos−1ð 1ffiffi

5
p Þ ≈ 638

(see Figure 5 top left corner). Therefore, θ≈ 638− 458≈ 188, and hence k ¼
ffiffi
5
9

q ffiffiffi
2

p
cos188≈ 1.

Hence, changing the orientation of w1 leads to a different extracted signal.

2.3 Ambiguities of ICA
ICA has some ambiguities such as:

� The order of independent components: In ICA, theweight vector ðwiÞ is initialized
randomly and then rotated to find one independent component. During the rotation, the
value ofwi is updated iteratively. Thus,wi extracts source signals but not in a specific
order.

� The sign of independent components: Changing the sign of independent
components has not any influence on the ICA model. In other words, we can multiply
the weight vectors inW by −1without affecting the extracted signal. In our example,
in Section 2.2.1, the value ofw1 was

�
1

3

2

3

�
. Multiplyingw1 by−1, i.e.,w1 ¼

�
–
1

3
–
2

3

�
has

no influence becausew1 still in the same direction with the samemagnitude and hence
the value of k will not be changed, and the extracted signal s1 will be with the same

values but with a different sign, i.e., s1 ¼ wT
1 X ¼ ð − 1 0 ÞT. As a result, the matrix

W in n-dimensional space has 2n local maxima, i.e., two local maxima for each
independent component, corresponding to si and −si [21]. This problem is
insignificant in many applications [16,19].

3. ICA: Preprocessing phase
This section explains the preprocessing steps of the ICA technique. This phase has two main
steps: centering and whitening.

3.1 The centering step
The goal of this step is to center the data by subtracting the mean from all signals. Given n
mixture signals ðXÞ, the mean is μ and the centering step can be calculated as follows:

D ¼ X� μ ¼

0
BB@

d1

d2

..

.

dn

1
CCA ¼

0
BB@

x1 � μ
x2 � μ

..

.

xn � μ

1
CCA (13)

where D is the mixture signals after the centering step as in Figure 9A) and μ∈R13N is the
mean of all mixture signals. The mean vector can be added back to independent components
after applying ICA.
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3.2 The whitening data step
This step aims to whiten the data which means transforming signals into uncorrelated
signals and then rescale each signal to be with a unit variance. This step includes two main
steps as follows.

1. Decorrelation: The goal of this step is to decorrelate signals; in other words, make
each signal uncorrelated with each other. Two random variables are
considered uncorrelated if their covariance is zero.

In ICA, the PCA technique can be used for decorrelating signals. In PCA,
eigenvectorswhich form the newPCA space are calculated.In PCA, first, the covariance
matrix is calculated. The covariance matrix of any two variables ðxixjÞ is defined as
follows,Σij ¼ Efxixjg −EfxigEfxjg ¼E½ðxi − μiÞðxj − μjÞ�. Withmany variables, the

covariance matrix is calculated as follows, Σ ¼ E½DDT �, where D is the centered data
(see Figure 9B)). The covariancematrix is solved by calculating the eigenvalues ðλÞand
eigenvectors ðVÞ as follows, VΣ ¼ λV, where the eigenvectors represent the principal
components which represent the directions of the PCA space and the eigenvalues are

Figure 9.
Visualization for the
preprocessing steps in
ICA. (A) the centering
step, (B) The whitening
data step.

ACI
17,2

232



scalar values which represent the magnitude of the eigenvectors. The eigenvector
which has the maximum eigenvalue is the first principal component ðPC1Þ and it has
the maximum variance [33]. For decorrelating mixture signals, they are projected onto
the calculated PCA space as follows, U ¼ VD.

2. Scaling: the goal here is to scale each decorrelated signal to be with a unit
variance. Hence, each vector in U has a unit length and is then rescaled to be

with a unit variance as follows, Z ¼ λ−
1
2 U ¼ λ−

1
2VD, where Z is the whitened or

sphered data and λ
−1
2 is calculated by simple component-wise operation as

follows, λ−
1
2 ¼ fλ−1

2

1 ; λ
−
1
2

2 ; . . . ; λ
−
1
2

n g. After the scaling step, the data becomes
rotationally symmetric like a sphere; therefore, the whitening step is also called
sphering [32].

3.3 Numerical example
Given eight mixture signalsX ¼ fx1; x2; . . . ;x8g, eachmixture signal is represented by one
row inX as in Eq. (14).6 The mean (μ) was then calculated and its value was μ ¼ 2:63 3:63 .

XT ¼
�
1:00 1:00 2:00 0:00 5:00 4:00 5:00 3:00
3:00 2:00 3:00 3:00 4:00 5:00 5:00 4:00

	
(14)

In the centering step, the data are centered by subtracting the mean from each signal and the
value of Dwill be as follows:

DT ¼
��1:63 �1:63 �0:63 �2:63 2:38 1:38 2:38 0:38
�0:63 �1:63 �0:63 �0:63 0:38 1:38 1:38 0:38

	
(15)

The covariancematrix ðΣÞand its eigenvalues ðλÞand eigenvectors ðVÞare then calculated as
follows:

Σ ¼
�
3:70 1:70
1:70 1:13

	
; λ ¼

�
0:28 0:00
0:00 4:54

	
; andV ¼

�
0:45 �0:90
�0:90 �0:45

	
(16)

From Eq. (16) it can be remarked that the two eigenvectors are orthogonal as shown in
Figure 10, i.e., vT1 v2 ¼ ½0:45− 0:9�− 0:90− 0:45T ¼ 0, where v1 and v2 represent the first
and second eigenvectors, respectively. Moreover, the value of the second eigenvalue
ðλ2Þ was more than the first one ðλ1Þ, and λ2 represents 4:54

0:28þ4:54≈ 94:19% of the total
eigenvalues; thus, v2 and v1 represent the first and second principal components of the
PCA space, respectively, and v2 points to the direction of the maximum variance (see
Figure 10).

The two signals are decorrelated by projecting the centered data onto the PCA space as
follows, U ¼ VD. The values of U is

UT ¼
��0:16 0:73 0:28 �0:61 0:72 �0:62 �0:18 �0:17
1:73 2:18 0:84 2:63 �2:29 �1:84 �2:74 �0:50

	
(17)
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The matrix U is already centered; thus, the covariance matrix for U is given by

E
�
UUT

� ¼ �
0:28 0
0 4:54

	
(18)

From Eq. (18) it is remarked that the twomixture signals are decorrelated by projecting them
onto the PCA space. Thus, the covariance matrix is diagonal and the off-diagonal elements
which represent the covariance between twomixture signals are zeros. Figure 10 displays the
contour of the two mixtures is ellipsoid centered at the mean. The projection of mixture
signals onto the PCA space rotates the ellipse so that the principal components are aligned
with the x1 and x2 axes. After the decorrelation step, the signals are then rescaled to be with a
unit variance (see Figure 10). The whitening can be calculated as follows,Z ¼ λ−

1
2VD, and the

values of the mixture signals after the scaling step are

ZT ¼
��0:31 1:38 0:53 �1:15 1:36 �1:17 �0:33 �0:32
0:81 1:02 0:39 1:23 �1:08 �0:87 �1:29 �0:24

	
(19)

The covariance matrix for the whitened data is E½ZZT � ¼ E½ðλ−0:5VDÞðλ−0:5VDÞT � ¼
E½ðλ−0:5VDÞðDTVTλ−0:5Þ�. λ is diagonal; thus, λ ¼ λT, and ½DDT � is the covariance matrix

ðΣÞwhich is equal to VTλV. Hence, E½ZZT � ¼ E½λ−0:5VVTλVVTλ−0:5� ¼ I, where VVT ¼ I
becauseV is orthonormal.7 This means that the covariance matrix of the whitened data is the
identity matrix (see Eq. (20)) which means that the data are decorrelated and have unit
variance.

E
�
ZZT

� ¼ �
1:00 0
0 1:00

	
(20)

Figure 11 displays the scatter plot for twomixtures, where eachmixture signal is represented
by 500-time steps. As shown in Figure 11(a), the scatter of the original mixtures forms an

Figure 10.
Visualization for our
whitening example. In
the left panel, the
mixture signals are
plotted in red stars.
This panel also shows
the principal
components (PC1 and
PC2). In the top right
panel, the data in a blue
color represent the
projected data onto the
PCA space. The data
are then normalized to
be with a unit variance
(the bottom right
panel). In this panel, the
data in a green color
represent the whitened
data. A color version of
this figure is available
online.
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Figure 11.
Visualization for

mixture signals during
the whitening step. (a)

scatter plot for two
mixture signals x1 and
x2, (b) the projection of
mixture signals onto
the PCA space, i.e.,
decorrelation, (c)

mixture signals after
the whitening step are
scaled to have a unit

variance.
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ellipse centered at the origin. Projecting the mixture signals onto the PCA space rotates the
principal components to be alignedwith the x1 and x2 axes and hence the ellipse is also rotated
as shown in Figure 11(b). After the whitening step, the contour of the mixture signals forms a
circle. This is because the signals have unit variance.

4. Principles of ICA estimation
In ICA, the goal is to find the unmixing matrix ðWÞ and then projecting the whitened data
onto that matrix for extracting independent signals. This matrix can be estimated using
three main approaches of independence, which result in slightly different unmixing
matrices. The first is based on the non-Gaussianity. This can bemeasured by somemeasures
such as negentropy and kurtosis, and the goal of this approach is to find independent
components which maximize the non-Gaussianity [25,30]. In the second approach, the ICA
goal can be obtained byminimizing themutual information [22,14]. Independent components
can be also estimated by using maximum likelihood (ML) estimation [28]. All approaches
simply search for a rotation or unmixing matrixW. Projecting the whitened data onto that
rotation matrix extracts independent signals. The preprocessing steps are calculated from
the data, but the rotation matrix is approximated numerically through an optimization
procedure. Searching for the optimal solution is difficult due to the local minima exists in the
objective function. In this section, different approaches are introduced for extracting
independent components.

4.1 Measures of non-Gaussianity
Searching for independent components can be achieved by maximizing the non-Gaussianity
of extracted signals [23]. Twomeasures are used for measuring the non-Gaussianity, namely,
Kurtosis and negative entropy.

4.1.1 Kurtosis. Kurtosis can be used as a measure of non-Gaussianity, and the extracted
signal can be obtained by finding the unmixing vector which maximizes the kurtosis of the
extracted signal [4]. In other words, the source signals can be extracted by finding the
orientation of the weight vectors which maximize the kurtosis.

Kurtosis is simple to calculate; however, it is sensitive for outliers. Thus, it is not robust
enough for measuring the non-Gaussianity [21]. The Kurtosis (K) of any probability density
function (pdf) is defined as follow,

KðxÞ ¼ E


x4
�� 3



E½x2��2 (21)

where the normalized kurtosis ðbKÞ is the ratio between the fourth and second central
moments, and it is given by

bKðxÞ ¼ E½x4�
E½x2�2 � 3 ¼

1
N

PN

i¼1ðxi � μÞ4
1
N

PN

i¼1ðxi � μÞ2
� 2

� 3 (22)

For whitened data ðZÞ,E½Z2� ¼ 1becauseZwith a unit variance. Therefore, the kurtosis will
be

KðZÞ ¼ bKðZÞ ¼ E


Z4

�� 3 (23)

As reported in [20], the fourth moment for Gaussian signals is 3ðE½Z2�Þ2 and

hence bKðxÞ ¼ E½Z4�− 3 ¼ E½3ðE½Z2�Þ2�− 3 ¼ E½3ð1Þ2�− 3 ¼ 0, where E½Z2� ¼ 1. As a
consequence, Gaussian pdfs have zero kurtosis.
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Kurtosis has an additivity property as follows:

Kðx1 þ x2Þ ¼ Kðx1Þ þ Kðx2Þ; (24)

and for any scalar parameter α,

Kðαx1Þ ¼ α4Kðx1Þ (25)

where α is a scalar.
These properties can be used for interpreting one of the ambiguities of ICA that are

mentioned in Section 2.3, which is the sign of independent components. Given two source

signals s1 and s2, and the matrix Q ¼ ATW ¼ A−1W. Hence,

Y ¼ WTX ¼ WTAS ¼ QS ¼ q1s1 þ q2s2 (26)

Using the kurtosis properties in Eqs. (24) and (25), we have

KðYÞ ¼ Kðq1s1Þ þ Kðq2s2Þ ¼ q4
1Kðs1Þ þ q4

2Kðs2Þ (27)

Assume that s1; s2, and Y have a unit variance. This implies that E½Y2� ¼
q2
1E½s1� þ q2

2E½s2� ¼ q2
1 þ q2

2 ¼ 1. Geometrically, this means that Q is constrained to a unit
circle in the two-dimensional space. The aim of ICA is to maximize the kurtosis
ðKðYÞ ¼ q4

1K ðs1Þ þ q4
2K ðs2ÞÞ on the unit circle. The optimal solutions, i.e., maxima, are the

points when one ofQ is zero and the other is nonzero; this is due to the unit circle constraint, and
the nonzero element must be 1 or�1 [11]. These optimal solutions are the ones which are used to

extract ±si. Generally, Q ¼ ATW ¼ I means that each vector in the matrix Q extracts only
one source signal.

The ICs can be obtained by finding the ICs which maximizes kurtosis of extracted signals

Y ¼ WTZ. The kurtosis of Y is then calculated as in Eq. (23), where the term ðE½y2
i �Þ

2
in

Eq. (22) is equal one because W andZ have a unit length. W has a unit length because it is
scaled to be with a unit length, and Z is the whitened data, so, it has a unit length. Thus, the
kurtosis can be expressed as:

KðYÞ ¼ E
h�
WTZ

�4i� 3 (28)

The gradient of the kurtosis ofY is given by, vKðWTZÞ
vW

¼ cE½ZðWTZÞ3�, where c is a constant,
which we set to unity for convenience. The weight vector is updated in each iteration as

follows,wnew ¼ wold þ ηE½ZðwT
oldZÞ

3�, where η is the step size for the gradient ascent. Since
we are optimizing the kurtosis on the unit circle kwk ¼ 1, the gradient method must be
complemented by projecting w onto the unit circle after every step. This can be done by
normalizing the weight vectors wnew through dividing it by its norm as follows,
wnew ¼ wnew=kwnewk. The value of wnew is updated in each iteration.

4.1.2Negative entropy.Negative entropy is termed negentropy, and it is defined as follows,
JðyÞ ¼ HðyGaussianÞ−HðyÞ, where HðyGaussianÞ is the entropy of a Gaussian random variable
whose covariance matrix is equal to the covariance matrix of y. The entropy of a random
variable Q which has N possible outcomes is

HðQÞ ¼ −E


log pqðqÞ

� ¼ –
1

N

XN
t

log pq
�
qt
�

(29)

where pqðqtÞ is the probability of the event qt; t ¼ 1; 2; . . . ; N.
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The negentropy is zero when all variables are Gaussian, i.e., HðyGaussianÞ ¼ HðyÞ.
Negentropy is always nonnegative because the entropy of Gaussian variable is themaximum
among all other random variables with the same variance. Moreover, it is invariant for
invertible linear transformation and it is scale-invariant [21]. However, calculating the
entropy from a finite data is computationally difficult. Hence, different approximations have
been introduced for calculating the negentropy [21]. For example,

JðyÞ≈ 1

12
E


y3
�2 þ 1

48
KðyÞ2 (30)

where y is assumed to be with zero mean. This approximation suffers from the sensitivity of
kurtosis; therefore, Hyvarinen proposed another approximation based on the maximum
entropy principle as follows [23]:

JðyÞ≈
Xp

i¼1

kiðE½GiðyÞ� � E½GiðvÞ�Þ2; (31)

where ki are some positive constants, v indicates a Gaussian variable with zero mean and unit
variance, Gi represent some quadratic functions [23,20]. The function G has different choices
such as

G1ðyÞ ¼ 1

a1
log cosh a1y andG2ðyÞ ¼ −exp

�
−y2

�
2
�

(32)

where 1≤ a1 ≤ 2. These two functions are widely used, and these approximations give a very
good compromise between the kurtosis and negentropy propertieswhich are the two classical
non-Gaussianity measures.

4.2 Minimization of mutual information
Minimizing mutual information between independent components is one of the well-known

approaches for ICA estimation. In ICA, maximizing the entropy of Y ¼ WTX can be

achieved by spreading out the points inY as much as possible. Signals bY can be obtained by

transforming Y by g as follows, bY ¼ gðYÞ, where g is assumed to be the cumulative density

function cdf of source signals. Hence, bY have a uniform joint distribution.

The pdf of the linear transformation Y ¼ WTX is, pY ðYÞ ¼ pX ðXÞ=jWj, where jWj
represents jvY=vXj. Similarly, pbY ðbYÞ ¼ pY ðYÞ=

���� dbYdY
���� ¼ pY ðYÞ

pSðYÞ, where
���� dbYdY

���� is equal to g
0 ðyÞ

which represents the pdf for source signals (pS).
This can be substituted in Eq. (29) and the entropy will be

HðbYÞ ¼ –
1

N

XN
t¼1

log pbYðbYtÞ ¼ –
1

N

XN
t

log
pY ðYÞ
pSðYÞ ¼ −

1

N

XN
t¼1

log
pX ðxtÞ

jWjpSðytÞ

¼ 1

N

XN
t¼1

log pSðytÞ þ log jWj � 1

N

XN
t¼1

log pX ðxtÞ (33)

In Eq. (33), increasing the matching between the extracted and source signals, the ratio pY ðYÞ
pSðYÞ

will be one. As a consequence, the pbY ðbYÞ ¼ pY ðYÞ
pS ðYÞ becomes uniform which maximizes the

entropy of pbY ðbYÞ. Moreover, the term −1
N

PN
t¼1log pX ðXtÞ represents the entropy ofX; hence,

Eq. (33) is given by
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HðbYÞ ¼ 1

N

XN
t¼1

log pSðytÞ þ log jWj þ HðXÞ (34)

Hence, from Eq. (34),HðYÞ ¼ HðXÞ þ log jWj. This means that in the linear transformation

Y ¼ WTX, the entropy is changed (increased or decreased) by logjWj. As mentioned before,

the entropy HðXÞ is not affected byW andWmaximizes only the entropy HðbYÞ and hence
HðXÞ is removed from Eq. (34), and final form of the entropy with M marginal pdfs is

HðbYÞ ¼ 1

N

XN
t¼1

XM
i¼1

log pS
�
yit

�þ log jWj (35)

Mutual information measures the independence between random variables. Thus,
independent components can be obtained by minimizing the mutual information between
different components [6]. Given two random variables x and y, the mutual information is
denoted by I, and it is given by

Iðx; yÞ ¼
X
x;y

pðx; yÞlog pðx; yÞ
pðxÞpðyÞ

¼ HðxÞ � HðxjyÞ ¼ HðyÞ � HðyjxÞ
¼ HðxÞ þ HðyÞ � Hðx; yÞ
¼ Hðx; yÞ � HðxjyÞ � HðyjxÞ

(36)

where HðxÞ and HðyÞ represent the marginal entropies, HðxjyÞ and HðyjxÞ are conditional
entropies, and Hðx; yÞ is the joint entropy of x and y. The value of I is zero if and only if the
variables are independent; otherwise, I is non-negative. Mutual information between m
random variables ðyi; i ¼ 1; 2; . . . ; mÞ is given by

Iðy1; y2; . . . ; ymÞ ¼
Xm
i¼1

HðyiÞ � HðyÞ (37)

In ICA, where Y ¼ WTX and HðYÞ ¼ HðXÞ þ log jWj, Eq. (37) can be written as

Iðy1;y2; . . . ;ymÞ ¼
Xm
i¼1

HðyiÞ � HðYÞ

¼
Xm
i¼1

HðyiÞ � HðXÞ � logjdetWj
(38)

where detW is a notation for a determine of the matrix W. When Y is whitened; thus,

E½YYT � ¼ WE½XXT �WT ¼ I0detðWE½XXT �WTÞ ¼ ðdetWÞ ðdetE½XXT �ÞðdetWTÞ0
det ðWE½XXT �WTÞ ¼ detI ¼ 1. As a consequence, detW is a constant, and the definition of
mutual information is

Iðy1; y2; . . . ; ymÞ ¼ C �
X
i

JðyiÞ (39)

where C is a constant.
From Eq. (39), it is clear that maximizing negentropy is related to minimizing mutual

information and they differ only by a sign and a constant C. Moreover, non-Gaussianity
measures enable the deflationary (one-by-one) estimation of the ICswhich is not possible with
mutual information or likelihood approaches.8 Further, with the non-Gaussianity approach,
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all signals are enforced to be uncorrelated, while this constraint is not necessary usingmutual
information approach.

4.3 Maximum Likelihood (ML)
Maximum likelihood (ML) estimation method is used for estimating parameters of statistical
models given a set of observations. In ICA, this method is used for estimating the unmixing
matrix ðWÞwhich provides the best fit for extracted signals Y.

The likelihood is formulated in the noise-free ICA model as follows, X ¼ AS, and this

model can be estimated using ML method [6]. Hence, pX ðXÞ ¼ pS ðSÞ
jdetAj ¼ jdetWjpSðSÞ. For

independent source signals, ði:e: pSðSÞ ¼ p1ðs1Þp2ðs2Þ . . . ppðspÞ ¼
Q

ipiðsiÞÞ, pX ðXÞ is
given by

pxðXÞ ¼ jdetWj
Y
i

piðsiÞ ¼ jdetWj
Y
i

pi
�
wT

i X
�

(40)

Given T observations of X, the log-likelihood of Wwhich is denoted by LðWÞ is given by

LðWÞ ¼
YT
t

Yp
i

jdetWjpi
�
wT

i xðtÞ
�

(41)

Practically, the likelihood is usually simplified using the logarithm, this is called
log-likelihood, which makes Eq. (41) more simpler as follows:

logLðWÞ ¼
Xp

i¼1

log pi
�
wT

i xðtÞ
�þ TlogjdetWj (42)

Themean of any randomvariable x can be calculated asE½x� ¼ 1
T

PT
i¼1xt0

PT
i¼1xt ¼ TE½x�.

Hence, Eq. (42) can be simplified to

1

T
logLðWÞ ¼ E

Xp

i¼1

log pi
�
wT

i X
�þ logjdetWj (43)

The first term E
P

i¼1log piðwT
i XÞ ¼ −

P
i¼1HðwT

i XÞ; therefore, the likelihood and mutual
information are approximately equal, and they differ only by a sign and an additive constant.
It is worth mentioning that maximum likelihood estimation will give wrong results if the
information of ICs are not correct; but, with the non-Gaussianity approach, we need not for
any prior information [23].

5. ICA algorithms
In this section, different ICA algorithms are introduced.

5.1 Projection pursuit
Projection pursuit (PP) is a statistical technique for finding possible projections of multi-
dimensional data [13]. In the basic one-dimensional projection pursuit, the aim is to find the
directionswhere the projections of the data onto these directions have distributionswhich are
deviated fromGaussian distribution, and this exactly is the same goal of ICA [13]. Hence, ICA
is considered as a variant of projection pursuit.

In PP, one source signal is extracted from each projection, which is different than ICA
algorithms that extract p signals simultaneously from nmixtures. Simply, in PP, after finding
the first projectionwhichmaximizes the non-Gaussianity, the same process is repeated to find
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new projections for extracting next source signal(s) from the reduced set of mixture signals,
and this sequential process is called deflation [17].

Given nmixture signals which represent the axes of the n-dimensional space ðXÞ. The nth
source signal can be extracted using the vectorwnwhich is orthogonal to the other n− 1axes.
These mixture signals in the n-dimensional space are projected onto the ðn− 1Þ-dimensional
space which has n− 1 transformed axes. For example, assume n ¼ 3, and the third source
signal can be extracted by findingw3 which is orthogonal to the plane that is defined by the

other two transformed axes s
0
1 and s

0
2; this plane is denoted by p

0
1;2. Hence, the data points in

three-dimensional space are projected onto the plane p
0
1;2 which is a two-dimensional space.

This process is continued until all source signals are extracted [20,32].
Given three source signals each source signal has 10000 time-steps as shown in Figure 12.

These signals represent sound signals. These sound signals were collected from Matlab,
where the first signal is called Chrip, the second signal is called gong, and the third is called
train. Figure 12 (d, e, and f) shows the histogram for each signal. As shown, the histograms
are non-Gaussian. These three signals were mixed, and the mixing matrix was as follows:

A ¼
0
@ 1:5 0:7 0:2

0:6 0:2 0:9
0:1 1 0:6

1
A (44)

Figure 13 shows the mixed signals and the histogram for these mixture signals. As shown in
the figure, the mixture signals follow all the properties that were mentioned in Section 2.1.1,
where (1) source signals are more independent than mixture signals, (2) the histograms of
mixture signals in Figure 13 are much more Gaussian than the histogram of source signals in
Figure 12mixtures signals (see Figure 13 aremore complex than source signals (see Figure 12)).

In the projection pursuit algorithm, mixture signals are first whitened, and then the values
of the first weight vector ðw1Þ are initialized randomly. The value of w1 is listed in Table 1.
This weight vector is then normalized, and it will be used for extracting one source signal
ðy1Þ. The kurtosis for the extracted signal is then calculated and the weight vector is updated
tomaximize the kurtosis iteratively. Table 1 shows the kurtosis of the extracted signal during
some iterations of the projection pursuit algorithm. It is remarked that the kurtosis increases
during the iterations as shown in Figure 14(a). Moreover, in this example, the correlation
between the extracted signal ðy1Þ and all source signals (s1; s2, and s3) were calculated. This
may help to understand that how the extracted signal is correlatedwith one source signal and
not correlated with the other signals. From the table, it can be remarked that the correlation
between y1 and source signals are changed iteratively, and the correlation between y1 and s1
was 1 at the end of iterations.

Figure 15 shows the histogram of the extracted signal during the iteration. As shown in
Figure 15(a), the extracted signal is Gaussian; hence, its kurtosis value which represents the
measure of non-Gaussianity in the projection pursuit algorithm is small (0.18). The kurtosis
value of the extracted signal increased to 0.21, 3.92, and 4.06 after the 10th, 100th, and 1000th
iterations, respectively. This reflects that the non-Gaussianity of y1 increased during the
iterations of the projection pursuit algorithm. Additionally, Figure 14(b) shows the angle
between the optimal vector and the gradient vector ðαÞ. As shown, the value of the angle is
dramatically decreased and it reached zero which means that both the optimal and gradient
vectors have the same direction.

5.2 FastICA
FastICA algorithm extracts independent components bymaximizing the non-Gaussianity by
maximizing the negentropy for the extracted signals using a fixed-point iteration scheme [18].
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Figure 12.
Three source signals in
our example (a, b, and c)
and their histograms
(d, e, and f).
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Figure 13.
Three mixture signals
in our example (a, b,

and c) and their
histograms (d, e, and f).
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FastICA has a cubic or at least quadratic convergence speed and hence it is much faster than
Gradient-based algorithms that have linear convergence. Additionally, FastICA has no
learning rate or other adjustable parameters which makes it easy to use.

FastICA can be used for extracting one IC, this is called one-unit, where FastICA finds the
weight vector ðwÞ that extracts one independent component. The values ofw are updated by
a learning rule that searches for a direction which maximizes the non-Gaussianity.

The derivative of the function G in Eq. (31) is denoted by g, and the derivatives for G1 and
G2 in Eq. (32) are:

g1ðyÞ ¼ tanhða1uÞ and g2ðyÞ ¼ u exp
�
−u2

�
2
�

(45)

where 1≤ a1 ≤ 2 is a constant, and often a1 ¼ 1. In FastICA, the convergence means that
the dot-product between the current and old weight vectors is almost equal to one and
hence the values of the new and old weight vectors are in the same direction. The maxima
of the approximation of the negentropy of wTX is calculated at a certain optima of

E½GðwTXÞ�, where E½ðwTXÞ2� ¼ kw2k ¼ 1. The optimal solution is obtained where,
E½XgðwTXÞ�− βw ¼ 0, and this equation can be solved using Newton’s method.9 Let
FðwÞ ¼ E½XgðwTXÞ�− βw; hence, the Jacobian matrix is given by, JFðwÞ ¼ vF

vw
¼

E½XXTg
0 ðwTXÞ�− βI. Since the data are whitened; thus, ½XXTg

0 ðwTXÞ�≈ E½XXT �
E½g 0 ðwTXÞ�0 E½XXTg

0 ðwTXÞ� ¼ E½g 0 ðwTXÞ�I and hence the Jacobian matrix becomes
diagonal, which is easily inverted. The value of w can be updated according to Newton’s
method as follows:

wþ ¼ w� FðwÞ
F 0 ðwÞ ¼ w� E½XgðwTXÞ� � βw

E½g 0 ðwTXÞ� � β
(46)

Eq. (46) can be further simplified by multiplying both sides by β−E½g 0 ðwTXÞ� as follows:
wþ ¼ E



Xg

�
wTX

��� E


g

0�
wTX

��
w (47)

Several units of FastICA can be used for extracting several independent components, the
output wT

i X is decorrelated iteratively with the other outputs which were calculated in the

previous iterations ðwT
1 X; wT

2 X; . . . ; wT
i−1XÞ. This decorrelation step prevents different

vectors from converging to the same optima.Deflation orthogonalizationmethod is similar to
the projection pursuit, where the independent components are estimated one by one. For each
iteration, the projections of the previously estimated weight vectors ðwpwjÞwj are subtracted
fromwp, where j ¼ 1; 2; . . . ; p− 1, and thenwp is normalized as in Eq. (48). In this method,
estimation errors in the first vectors are cumulated over the next ones by orthogonalization.
Symmetric orthogonalization method can be used when a symmetric correlation, i.e., no
vectors are privileged over others, is required [18]. Hence, the vectorswi can be estimated in

Results iter 5 1 iter 510 iter 5 100 iter 5 1000

0.3 0.33 0.99 1.00 corrðy1; s1Þ
0.94 0.93 0.14 0.00 corrðy1; s2Þ
0.14 0.13 0.01 0.01 corrðy1; s3Þ
w1

0
@ − 0:50

0:23
− 0:84

1
A

0
@ − 0:46

0:24
− 0:85

1
A

0
@ 0:42

0:72
− 0:5

1
A

0
@ 0:50

0:74
− 0:45

1
A

Kðy1Þ 0.18 0.21 3.92 4.06
α 1.22 1.18 0.07 5:3e0−5

Table 1.
Results of the
projection pursuit
algorithm in terms of
the correlation between
the extracted signal
ðy1Þ and source
signals, values of the
weight vector ðw1Þ,
kurtosis of y1, and the
angle between the
optimal vector and the
gradient vector ðαÞ
during the iterations of
the projection pursuit
algorithm.
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parallel which enables parallel computation. This method calculates all wi vectors using one-
unit algorithm in parallel, and then the orthogonalization step is applied for all vectors using

symmetric method as follows, W ¼ ðWWTÞ−1
2W, where ðWWTÞ−1

2 is calculated from the

eigenvalue decomposition as follows, VðWWTÞ ¼ λV; thus, ðWWTÞ−1
2 ¼ VTλ−

1
2V.

1:wp ¼ wp �
Xp

j¼1

wT
p wjwj

2:wp ¼ wpffiffiffiffiffiffiffiffiffiffiffiffi
wT

p wp

q (48)

6. Applications
ICA has been used in many applications for extracting source signals from a set of mixed
signals. These applications include:

� Biomedical applications: ICA was used for removing artifacts which mixed with
different biomedical signals such as Electroencephalogram (EEG), functional magnetic
resonance imaging (fMRI), andMagnetoencephalography (MEG) signals [5]. Also, ICA
was used for removing the electrocardiogram (ECG) interference from EEG signals, or
for differentiating between the brain signals and the other signals that are generated
from different activities as in [29].

� Audio signal processing: ICA has been widely used in audio signals for removing
noise [36]. Additionally, ICAwas used as a feature extraction method to design robust
automatic speech recognition models [8].

� Biometrics: ICA is for extracting discriminative features in different biometrics such
as face recognition [10], ear recognition [35], and finger print [27].

� Image processing: ICA is used in image segmentation to extract different layers
from the original image [12]. Moreover, ICA is widely used for noise removing from
raw images which represent the original signals [24].

7. Challenges of ICA
ICA is used for estimating the unknown matrix W ¼ A−1. When the number of sources (p)
and the number of mixture signals (n) are equal, the matrixA is invertible. When the number

)b()a(

Figure 14.
Results of the

projection pursuit
algorithm. (a) Kurtosis
of the extracted signal

(y1) during some
iterations of the

projection pursuit
algorithm, (b) the angle

between the optimal
vector and gradient

vector ðαÞ during some
iterations of the

projection pursuit
algorithm.
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(a
)

(b
)

(c
)

(d
)

Figure 15.
Histogram of the
extracted signal ðy1Þ.
(a) after the first
iteration, (b) after the
tenth iteration, (c) after
the 100th iteration, and
(d) after the 1000th
iteration.
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of mixtures is less than the number of source signals ðn < pÞ this is called the over-complete
problem; thus, A is not square and not invertible [26]. This representation sometimes is
advantageous as it uses as few “basis” elements as possible; this is called sparse coding. On
the other hand, when n > pmeans that the number of mixtures is higher than the number of
source signals and this is called the Under-complete problem. This problem can be solved by
deleting some mixtures using dimensionality reduction techniques such as PCA to decrease
the number of mixtures [1].

8. Conclusions
ICA is a widely-used statistical technique which is used for estimating independent
components (ICs) through maximizing the non-Gaussianity of ICs, maximizing the likelihood
of ICs, or minimizing mutual information between ICs. These approaches are approximately
equivalent; however, each approach has its own limitations.

This paper followed the approach of not only explaining the steps for estimating ICs, but
also presenting illustrative visualizations of the ICA steps to make it easy to understand.
Moreover, a number of numerical examples are introduced and graphically illustrated to
explain (1) how signals are mixed to formmixture signals, (2) how to estimate source signals,
and (3) the preprocessing steps of ICA. Different ICA algorithms are introduced with detailed
explanations. Moreover, ICA common challenges and applications are briefly highlighted.

Notes
1 In this paper, original signals, source signals, or independent components (ICs) are the same.
2 In this paper, source and mixture signals are represented as random variables instead of time series or
time signals, i.e., the time index is dropped.

3 Two signals s1 and s2 are independent if the amplitude of s1 is independent of the amplitude of s2.
4 In this paper, all bold lowercase letters denote vectors and bold uppercase letters indicate matrices.
5 In all numerical examples, the numbers are rounded up to the nearest hundredths (two numbers after
the decimal point).

6 Due to the paper size, Eq. (14) indicates XT instead of X; hence, each column represents one signal/
sample. Similarly, D in Eq. (15), U in Eq. (17), and Z in Eq. (19).

7 Two vectors x and y are orthonormal if they are orthogonal, i.e., the dot product x:y ¼ 0, and they are
unit vectors, i.e., ðxÞ ¼ ðyÞ ¼ 1.

8 Maximum Likelihood approach will be introduced in the next section.
9 Assume f ðxÞ ¼ 0, using Newton’s method, the solution is calculated as follows, xiþ1 ¼ xi −

f ðxÞ
f
0 ðxÞ.

References

[1] S.-I. Amari, Natural gradient learning for over-and under-complete bases in ICA, Neural Comput.
11 (8) (1999) 1875–1883.

[2] A. Asaei, H. Bourlard, M.J. Taghizadeh, V. Cevher, Computational methods for underdetermined
convolutive speech localization and separation via model-based sparse component analysis,
Speech Commun. 76 (2016) 201–217.

[3] R. Aziz, C. Verma, N. Srivastava, A fuzzy based feature selection from independent component
subspace for machine learning classification of microarray data, Genomics data 8 (2016) 4–15.

[4] E. Bingham, A. Hyv€arinen, A fast fixed-point algorithm for independent component analysis of
complex valued signals, Int. J. Neural Syst. 10 (01) (2000) 1–8.

Independent
component

analysis

247



[5] V.D. Calhoun, J. Liu, T. Adal, A review of group ICA for FMRA data and ICA for joint inference of
imaging, genetic, and ERP data, Neuroimage 45 (1) (2009) S163–S172.

[6] J.-F. Cardoso, Infomax and maximum likelihood for blind source separation, IEEE Sig. Process.
Lett. 4 (4) (1997) 112–114.

[7] R. Chai, G.R. Naik, T.N. Nguyen, S.H. Ling, Y. Tran, A. Craig, H.T. Nguyen, Driver fatigue
classification with independent component by entropy rate bound minimization analysis in an
eeg-based system, IEEE J. Biomed. Health Inf. 21 (3) (2017) 715–724.

[8] J.-W. Cho, H.-M. Park, Independent vector analysis followed by hmm-based feature enhancement
for robust speech recognition, Sig. Process. 120 (2016) 200–208.

[9] P. Comon, Independent component analysis, a new concept?, Sig. Process. 36 (3) (1994) 287–314.

[10] I. Dagher, R. Nachar, Face recognition using ipca-ica algorithm, IEEE Trans. Pattern Anal.
Machine Intell. 28 (6) (2006) 996–1000.

[11] N. Delfosse, P. Loubaton, Adaptive blind separation of independent sources: a deflation approach,
Sig. Process. 45 (1) (1995) 59–83.

[12] S. Derrode, G. Mercier, W. Pieczynski, Unsupervised multicomponent image segmentation
combining a vectorial hmc model and ica, in: Proceedings of International Conference on Image
Processing (ICIP), Vol. 2, IEEE, 2003, pp. II–407.

[13] J.H. Friedman, J.W. Tukey, A projection pursuit algorithm for exploratory data analysis, IEEE
Trans. Comput. 100 (9) (1974) 881–890.

[14] S.S. Haykin, S.S. Haykin, S.S. Haykin, S.S. Haykin, Neural Netw. Learn. Machines, Vol. 3, Pearson
Upper Saddle River, NJ, USA, 2009.

[15] J. H�erault, C. Jutten, B. Ans, D�etection de grandeurs primitives dans un message composite par
une architecture de calcul neuromim�etique en apprentissage non supervis�e. In: 10 Colloque sur le
traitement du signal et des images, FRA, 1985.GRETSI, Groupe d’Etudes du Traitement du
Signal et des Images 1985.

[16] A. Hyv€arinen, Independent component analysis in the presence of gaussian noise by maximizing
joint likelihood, Neurocomputing 22 (1) (1998) 49–67.

[17] A. Hyv€arinen, New approximations of differential entropy for independent component analysis
and projection pursuit. In: Advances in neural information processing systems. (1998b)
pp. 273–279.

[18] A. Hyvarinen, Fast and robust fixed-point algorithms for independent component analysis, IEEE
Trans. Neural Networks 10 (3) (1999) 626–634.

[19] A. Hyvarinen, Gaussian moments for noisy independent component analysis, IEEE Signal
Process. Lett. 6 (6) (1999) 145–147.

[20] A. Hyv€arinen, J. Karhunen, E. Oja, Independent Component Analysis, Vol. 46, John Wiley &
Sons, 2004.

[21] A. Hyv€arinen, E. Oja, Independent component analysis: algorithms and applications, Neural
Networks 13 (4) (2000) 411–430.

[22] D. Langlois, S. Chartier, D. Gosselin, An introduction to independent component analysis:
Infomax and fastica algorithms, Tutorials Quantit. Methods Psychol. 6 (1) (2010) 31–38.

[23] T.-W. Lee, Independent component analysis, in: Independent Component Analysis, Springer,
1998, pp. 27–66.

[24] T.-W. Lee, M.S. Lewicki, Unsupervised image classification, segmentation, and enhancement
using ica mixture models, IEEE Trans. Image Process. 11 (3) (2002) 270–279.

[25] T.-W. Lee, M.S. Lewicki, T.J. Sejnowski, Ica mixture models for unsupervised classification of
non-gaussian classes and automatic context switching in blind signal separation, IEEE Trans.
Pattern Anal. Mach. Intell. 22 (10) (2000) 1078–1089.

[26] M.S. Lewicki, T.J. Sejnowski, Learning overcomplete representations, Learning 12 (2) (2006).

ACI
17,2

248



[27] F. Long, B. Kong, Independent component analysis and its application in the fingerprint image
preprocessing, in: Proceedings. International Conference on Information Acquisition, IEEE, 2004,
pp. 365–368.

[28] B.A. Pearlmutter, L.C. Parra, Maximum likelihood blind source separation: A context-sensitive
generalization of ica. In: Advances in neural information processing systems. 1997, pp. 613–619.

[29] M.B. Pontifex, K.L. Gwizdala, A.C. Parks, M. Billinger, C. Brunner, Variability of ica
decomposition may impact eeg signals when used to remove eyeblink artifacts,
Psychophysiology 54 (3) (2017) 386–398.

[30] S. Shimizu, P.O. Hoyer, A. Hyv€arinen, A. Kerminen, A linear non-gaussian acyclic model for
causal discovery, J. Mach. Learn. Res. 7 (Oct) (2006) 2003–2030.

[31] J. Shlens, A tutorial on independent component analysis. arXiv preprint arXiv:1404.2986, 2014.

[32] J.V. Stone, 2004. Independent component analysis. A tutorial introduction. A bradford book.

[33] A. Tharwat, Principal component analysis-a tutorial, Int. J. Appl. Pattern Recognit. 3 (3) (2016)
197–240.

[34] J. Xie, P.K. Douglas, Y.N. Wu, A.L. Brody, A.E. Anderson, Decoding the encoding of functional
brain networks: an fmri classification comparison of non-negative matrix factorization (nmf),
independent component analysis (ica), and sparse coding algorithms, J. Neurosci. Methods 282
(2017) 81–94.

[35] H.-J. Zhang, Z.-C. Mu, W. Qu, L.-M. Liu, C.-Y. Zhang, A novel approach for ear recognition based
on ica and rbf network, in: Proceedings of International Conference on Machine Learning and
Cybernetics, Vol. 7, IEEE, 2005, pp. 4511–4515.

[36] M. Zibulevsky, B.A. Pearlmutter, Blind source separation by sparse decomposition in a signal
dictionary, Neural Computat. 13 (4) (2001) 863–882.

Corresponding author
Alaa Tharwat can be contacted at: aothman@fb2.fra-uas.de

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

Independent
component

analysis

249

mailto:aothman@fb2.fra-uas.de

	Independent component analysis: An introduction
	Introduction
	ICA background
	Mixing signals
	Illustrative example
	Numerical example: Mixing signals

	Unmixing signals
	Numerical examples: Unmixing signals

	Ambiguities of ICA

	ICA: Preprocessing phase
	The centering step
	The whitening data step
	Numerical example

	Principles of ICA estimation
	Measures of non-Gaussianity
	Kurtosis
	Negative entropy

	Minimization of mutual information
	Maximum Likelihood (ML)

	ICA algorithms
	Projection pursuit
	FastICA

	Applications
	Challenges of ICA
	Conclusions
	Notes
	References


