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Abstract
Fast iterative algorithms for designing birefringent filters with any specified spectral response are proposed.
From the Jones formalism,we derive two polynomials representing the transmitted and rejected response of the
filter, respectively. Once the coefficients of the filters are obtained, the orientation angle of each birefringent
section and the phase shift introduced by each compensator can be determined by an iterative algorithm that
gives an efficient solution to the birefringent filter design problem. Afterward, some design examples are
presented to demonstrate the effectiveness of the proposed approach. In comparison with results reported in
the literature, this approach provides the best performance in terms of accuracy and time complexity.
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1. Introduction
Optical filters are most commonly used in modern optical telecommunication systems [1] and
also used for biomedical spectral imaging [2–4] such as Raman chemical imaging [5] and
fluorescence microscopy applications [6]. Optical filters are essentially based on optical
interleavers that separate an incoming spectrum into two complementary set of periodic
spectra or combine them into a composite spectrum [7]. Most interleavers are based on
Michelson interferometers, Mach–Zehnder interferometer (MZI) or birefringent filter
principles [8–10]. The two classical designs of birefringent filters are Lyot filter [11] and
Solc filter [12,13], which both types of filters use different configurations of polarizers and
retardation plates to create narrow-band filters. Interference birefringent filters are optical
finite impulse response (FIR) filters based on the changes induced in the state of polarization
of light by birefringent materials. They are composed of a stack of retardation plates of
birefringent material placed between a polarizer and an analyser. A wide range of filters can
be achieved by orienting birefringent elements in an appropriate way. They play an
important role in dense wavelength division multiplexing (DWDM) systems, as in gain
equalization, dispersion compensation, prefiltering, and channels add/drop applications.
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The basic idea for the birefringent filter design is proposed by Harris et al. [14]. The desired
output spectrum is first developed into the finite terms of a Fourier series and then the relative
angles of both retarders and analyzer are determined according to the backward transfer
method. A generalization of the procedure presented in [14] that allows the realization of
impulse response having complex coefficients is detailed by Ammann and Yarborough [15].
The resulting network consists of n stages between an input and output polarizer, with each
stage containing a birefringent crystal and optical compensator. Afterwards, the main
problem of optical filter design becomes a problem of designing FIR filters using the Fourier
series expansion of the desired frequency response. This technique is modified and improved
by using a windowing technique to improve the shape of the frequency response. Classical
optimization methods such as weighting least square sense and Parks-McClellan method are
also used for designing digital FIR filters. To improve the performance of the classical
methods, many researchers have utilized heuristic evolutionary optimization algorithms
such as Genetic Algorithm (GA), Differential Evolution (DE), and Swarm Optimization (SO).
For example, an optical finite impulse response (FIR) filter design methods based on crystal
birefringence to produce arbitrary spectrum output are presented where a typical example of
a green/magenta filter used in a liquid crystal on silicon projection display is synthesized
[16,17]. An example of birefringent equalizing filter suitable for dispersion compensation in
wavelength division multiplexed (WDM) communication systems is presented in [18]. A
backward recursion of the transfer matrix is used to calculate the parameters of an optical
filter that has an impulse response with complex coefficients. In [7] a general synthesis
method for designing asymmetric flat-top birefringent interleavers is reported using a
combination of digital signal processing approach and computational optimization by GAs.

The birefringent filter structuremay be synthesized using a different technology based on
coherent optical delay-line circuit with a two-port lattice-form configuration [19] where
arbitrary filter characteristics corresponding to nth-order complex FIR digital filters can be
realized by n cascaded two-port lattice-form optical delay-line circuits.

In this paper, we present iterative algorithms to design a birefringent filter whose
coefficients are real or complex numbers and having an arbitrary frequency response. Some
design examples are also presented to demonstrate the effectiveness of the proposed
algorithms. The paper is organized as follows: Section 2 presents a theoretical analysis of the
proposed algorithms for synthesising an optical FIR filter with real coefficients. Next, an
extension to an arbitrary frequency response where the filter coefficients are complex
numbers is detailed in Section 3. Section 4 introduces further improvements in the method
given in [15] to calculate the complementary component. Design examples and simulation
results are discussed in Section 5. Discussions and performance comparisons against other
existing methods are presented in Section 6 and finally some conclusions are exposed in
Section 7.

2. Optical finite impulse response filter
First, we study an optical FIR filter which is composed of a stack of identical birefringent
retarderswith same length L placed between an input polarizer and output analyser as shown
in Figure 1. The x-axis is chosen parallel to the transmission axis of the input polarizer while s
and f represent respectively the slow and fast axis of the birefringent elements. The solid
arrows represent the fast axes of birefringent retarders and the transmitted axis of the output
analyser. fk represents the angle between the fast axis of the kth retarder and the y-axis
which is the same angle between the slow axis of the retarder and the x-axis, while fp is the
angle between the transmission axis of the output analyzer and the x-axis. After the input
polarizer, the polarized light comes through the retarder stack where each retarder separates
the input light into two components along its fast and slow axis respectively, and each
component acts as the input of the next one [14,17].
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The output of the optical filter must give the desired impulse response, AðtÞ.

AðtÞ ¼
Xn

k¼0

Akδðt � kaÞ (1)

where a denotes the time intervals between the impulse series.

a ¼ LΔη
c

(2)

L is the length of each retarder,Δη represents the difference of their refractive indices, and c is
the velocity of light in vacuum, so the phase difference caused by each retarder is expressed
by:

Γ ¼ 2πΔηL
λ

(3)

The frequency response of the optical filter is the Fourier transform of its impulse
response (1).

AðωÞ ¼
Xn

k¼0

Ak expð−jkaωÞ (4)

where ω ¼ 2πf ¼ ð2πcÞ=λ denotes the angular frequency of the light. Hence the spectrum
response of the filter is given by:

AðλÞ ¼
Xn

k¼0

Ak expð−jkΓÞ (5)

The complementary component, which is the output along the perpendicular direction of the
analyzer, can be expressed as:

BðλÞ ¼
Xn

k¼0

Bk expð−jkΓÞ (6)

We assume that the optical network is lossless, which means that the energy must be
conserved at all points within the network independently of the optical frequency ω.��AðωÞj2 þ ��BðωÞj2 ¼ I 20 (7)

The output, Eout, is determined by Jones matrix [16,20].

Eout ¼
Yn
i¼1

�
cos θi expð−jΓÞ sin θi
�sin θi expð−jΓÞ cos θi

��
cos θ0
�sin θ0

�
(8)

Figure 1.
Basic configuration of
stack of birefringent
retarders with same
length.
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Here θi (i≠ n) is the relative angle of each retarder and θn is the relative angle of the analyzer as
described in [16].

θ0 ¼ f0; θ1 ¼ f1 � f0; . . . ; θn ¼ fp � fn−1 (9)

Themain idea of this algorithm is to transfer thematrix–vector product into tow polynomials
αiðzÞ and βiðzÞ.

2.1 Forward algorithm
Let’s set ci ¼ cos θi; si ¼ sin θi, and z ¼ expð−jΓÞ. ConsequentlyEout is expressed as follows:

Eout ¼
Yn
i¼1

�
ciz si
�siz ci

��
c0
�s0

�
(10)

For two stages Eout has the following expression:

Eout ¼
�
c1z s1
�s1z c1

��
c0
�s0

�
¼

�
c1c0z� s1s0
�s1c0z� c1s0

�
(11)

By induction, each component of the Eout is a polynomial of z for n≥ 1. We set α00 ¼ c0 and
β00 ¼ −s0 and for ðn− 1Þ stages, Eout may be written as:

Eout ¼

2
664
Xn−1

i¼0
αn−1
i ziXn−1

i¼0
βn−1i zi

3
775 (12)

For n stages Eout is given by:

Eout ¼
�
cnz sn
�snz cn

�2664
Xn−1

i¼0
αn−1
i ziXn−1

i¼0
βn−1i zi

3
775 (13)

We can simply prove that:

Eout ¼

2
664
Xn

i¼0
αn
i z

iXn

i¼0
βni z

i

3
775 (14)

where αn
0 ¼ snβ

n−1
0 , βn0 ¼ cnβ

n−1
0 , αn

n ¼ cnαn−1
n−1, β

n
n ¼ −snαn−1

n−1 and α
n
i and β

n
i can be calculated by

the following equations for n≥ 2 and i ¼ 1; 2:::; n− 1.

αn
i ¼ cnαn−1

i−1 þ snβ
n−1
i (15)

βni ¼ −snαn−1
i−1 þ cnβ

n−1
i (16)

FromEq. (14) and knowing that the frequency responses of the two complementary filters are
defined by AðzÞ ¼ Pn

i¼0Aiz
i and BðzÞ ¼ Pn

i¼0Biz
i respectively. Thus, αni ¼ Ai and β

n
i ¼ Bi ,

for i ¼ 0; 1; 2:::; n
Once the relative angles are known, the forward algorithm gives the impulse responses of

the optical filters. However, the main problem of the birefringent filter synthesis is how to
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calculate the relative angles from the coefficients of the desired impulse response. To do this,
we use a backward algorithmwhere the relative angles are the solution of the set of equations
of the forward algorithm.

2.2 Backward algorithm
From the forward algorithm, the value of the nth relative azimuth angle θn is given by
θn ¼ arctanð−βnn=αnnÞand the coefficients of the ðn− 1Þorder filter are given by αn−1n−1 ¼ αnn=cn
and βn−10 ¼ βn0=cn. But for the other coefficients, wemust solve the system of Eqs. (15) and (16)
where three determinants must be formed; the denominator determinant is Δ ¼ 1 and
consequently the αn−1i−1 and βn−1i have the following expressions for i ¼ 1: n− 1.

αn−1
i−1 ¼

����� α
n
i sn

βni cn

����� ¼ cnαn
i � snβ

n
i (17)

βn−1i ¼
����� cn αn

i

�sn βni

����� ¼ snαn
i þ cnβ

n
i (18)

The Algorithm 1 summarizes the whole recursive process:

ACI
17,2

254



3. Extension to an arbitrary frequency response
In this case the optical network consists of n retarders between a polarizer and an analyser
where each retarder is composed of a birefringent crystal with equal length and optical
compensator [15]. However, in [18], each retarder is a birefringent plate composed of a section
of nominal length L and a section with variable length Li that acts as an optical compensator,
see Figure 2. The identical lengths introduce a unitary delay whereas the variable lengths
(optical compensators) introduce variable phase shifts bi between slow-axis and fast-axis
components. The expression of Eout is the same as in (8) except the delay operator
z ¼ expð−jωÞ becomes zexpð−jbiÞ where the phase shift bi is introduced by the variable
length Li.

Eout ¼
Yn
i¼1

�
ciz expð−jbi−1Þ si
�siz expð−jbi−1Þ ci

��
c0
�s0

�
(19)

3.1 Forward algorithm
Following the same steps as in the Section 2.1, we can prove that:

Eout ¼

2
664
Xn

i¼0
αn
i z

iXn

i¼0
βni z

i

3
775 (20)

where αn0 ¼ snβ
n−1
0 , βn0 ¼ cnβ

n−1
0 , αnn ¼ cnexpð−jbn−1Þαn−1n−1, β

n
n ¼ −snexpð−jbn−1Þαn−1n−1 and αni

and βni can be calculated by the following equations for n≥ 2 and i ¼ 1; 2:::; n− 1.

αn
i ¼ cn expð−jbn−1Þαn−1

i−1 þ snβ
n−1
i (21)

βni ¼ −sn expð−jbn−1Þαn−1
i−1 þ cnβ

n−1
i (22)

3.2 Backward algorithm
The backward algorithm determines the relative angle of each crystal, the retardation
introduced by each compensator, and the relative angle of the analyser. From the forward
algorithm, the value of the nth relative azimuth angle θn is given by θn ¼ arctanðαn0=βn0Þ and
the coefficients of the ðn− 1Þ order filters are given by αn−1n−1 ¼ ðαnn=cnÞexpð−jbn−1Þ and

βn−10 ¼ βn0=cn. But for the other coefficients and from the Eq. (21) and (22) αn−1i−1 and βn−1i have
the following expressions for n≥ 2 and i ¼ 1; 2:::; n− 1.

αn−1
i−1 ¼ �

cnαn
i � snβ

n
i

�
expðjbn−1Þ (23)

βn−1i ¼ snαn
i þ cnβ

n
i (24)

Figure 2.
Generalized structure
of an optical FIR filter.
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As shown in Section 3.1, αn0 must be real thus we need to add an optical compensator in the
front of the analyser by choosing bp ¼ −angleðA0Þ and the filter coefficients at the analyser
output become αni ¼ AiexpðjbpÞ , i ¼ 0; 1; 2:::; n. In practice, the final compensator may be
removed from the filter structure because the transmittance with and without final
compensator differ from each other by only a constant phase factor, and hence the final
compensator can be ignored.

Moreover, αn−10 ¼ ðcnαn1 − snβ
n
1Þexpðjbn−1Þ must be also real and consequently, we can

take αn−10 ¼ ��cnαn1 − snβ
n
1

�� and bn−1 ¼ −argðcnαn1 − snβ
n
1Þ as solution especially for

calculating the phase shift bi. If we count the optical compensator in the front of the
analyser, we also have n compensators (bn ¼ bp). Note that if bi ¼ 0 , a compensator is not
required for this stage. The coefficientsBi are in general complex numbers; we can note that
if BðωÞ is a solution of (7), then expðjμÞBðωÞ is also a solution [15]. Knowing that βn0 is also a
real number then we can choose the coefficients of the complementary component as
βni ¼ Biexpð−jμ0Þ, i ¼ 0; 1; 2:::; n where μ0 ¼ angleðB0Þ to make βn0 real. The Algorithm 2
explains the backward algorithm.
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4. Complementary component calculation
Assume that AðωÞ and therefore the desired Ai have been chosen. We must next find BðωÞ
which is polarized perpendicular to AðωÞ and therefore stopped by the output analyzer.

BðωÞB*ðωÞ ¼ I 20 � AðωÞA*ðωÞ (25)

Here I 20 must be chosen greater than, or equal to, the maximum value of AðωÞA*ðωÞ. Having
chosen I 20 , we can calculateBðωÞ fromBðωÞB*ðωÞusing themethod given in [15] with further
improvements. Letting x ¼ expð−jaωÞ, the expression of (25) becomes as follows:��BðxÞj2 ¼ d*nx

n þ d*
n−1x

n−1 þ . . . ::þ d*
1x

1 þ d0 þ d1x
−1 þ . . . :: dn−1x

−ðn−1Þ þ dnx
−n (26)

Note that
��BðxÞj2 has got the same roots as xn

��BðxÞj2 which is a polynomial of degree 2n.

xnjBðxÞj2 ¼
X2n
k¼0

Dkx
k (27)

where Dk ¼ −
Pk

m¼0AmA
*
nþm−k for k ¼ 0 : n− 1;Dn ¼ I 20 −

Pn

m¼0jAmj2, and Dnþk ¼ D*
n−k for

k ¼ 1 : n. The roots of the polynomial xnjBðxÞj2 are simply calculated using the eigenvalues of
its companion matrix. It is obvious that if rk is a root of (26), then (1=r*k) is also a root. One of
these two roots is associated with BðxÞ and the other with B*ðxÞ. if jrkj < 1 then j1=r*k j > 1,
thus we can retain the roots whose amplitudes less than unity as roots of BðxÞ as
straightforward solution. Once the roots of BðxÞ are found, we use the same steps as in [15] to
get the coefficients of the polynomial BðωÞ;Bk. if we have pðxÞ ¼

Qn

k¼1ðx− rkÞ ¼
Pn

k¼0pkx
k

then BðxÞ ¼ qpðxÞ ¼ Pn

k¼0qpkx
k where q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DðnÞ=Pn

k¼0p
2
k

p
. Consequently, the coefficients

of the polynomial BðωÞ are given by Bk ¼ qpk.
Notice that the all above algorithms are developed for I 20 ¼ 1. However, if I0 has an

arbitrary value, the output of the optical filter calculated using the orientation angle found by
the forward algorithm must be multiplied by I0 to have the desired impulse response of the
optical filter. Multiplying by I0, which represents an amplification/attenuation, has no effect
on the shape of the filter response. For all the following examples the chosen value of I0 is

ffiffiffi
2

p
(I 20 ¼ 2). Consequently, the output of the filter must be multiplied by

ffiffiffi
2

p
to have the desired

impulse response.

5. Design examples and simulation results
In order to demonstrate the effectiveness of the proposed algorithms for optical filter design,
some design examples are presented and discussed.

5.1 Flat-top birefringent interleaver filter
we study the case of an asymmetric flat-top birefringent interleaver synthesized using Parks-
McClellan optimal equiripple FIR filter design algorithm. The resulting filter HðzÞ is a
seventh-order filter, and its coefficients Ak are calculated in [7]. However, Bk are calculated
using the algorithm stated in Section 4, and the relative angles are found by the backward
algorithm of the Section 2 where the filter coefficients are real. Once the orientation angles are
found, we can calculate the coefficients bAk of the optical filter using the forward algorithm and
compare them with the desired ones. Table 1 shows the filter parameters obtained by the
proposed algorithms.

We can notice that the calculated coefficients of the optical filter are exactly equal to the
desired ones and consequently the desired filter and the obtained one have the same
spectrum.
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5.2 Multi-channel selector
The second example is a multi-channel selector which is an optical frequency filter designed
to select signals at certain frequencies from eight frequency-division multiplexing (FDM)
signals [19]. In this case, the optical filter is synthesized to select three signals with
frequencies of f1; f3 and f7 from eight FDMsignals. Thus, the transmittance values at the three
frequency points of ð−7=16Þfo; ð−3=16Þfo; ð5=16Þf0 must be 1, and the transmission values at
the other frequency points must be 0 where the number of expansion coefficients is set at 16.
The inverse discrete Fourier transform is used to obtain the filter coefficients. As the
coefficients are complex numbers, wemust use the algorithms of the Section 3 to calculate the
parameters of the filter. Table 2 shows the obtained opto-geometrical parameters of
the designed filter. The phase shifts bk are non-zero, because the expansion coefficients are
complex numbers. Once the relative angles and phases shifts are obtained using the
backward algorithm, we can calculate the output of the optical filter using the forward
algorithm where the calculated coefficients bAk match exactly the desired coefficients Ak,
which confirms the accuracy of the proposed approach.

5.3 Dispersion compensation
Birefringent equalizing filters are interesting examples of optical filters whose coefficients
of the impulse response are complex numbers. They are suitable for dispersion
compensation in wavelength division multiplexed (WDM) communication systems. The

Ak Bk θk(rad) bAk

0.0197 0.0003 0.0169 0.0197
�0.0587 0.0019 �0.0469 �0.0587
0.0043 �0.0027 �0.0067 0.0043
0.5347 �0.0183 0.4293 0.5347
0.5347 0.0321 0.4293 0.5347
0.0043 0.0572 �0.0067 0.0043

�0.0587 �0.2362 �0.0469 �0.0587
0.0197 1.1662 �1.5539 0.0197

Ak Bk θk (rad) bk (rad) bAk

0.1875 �0.0081 þ 0.0034i �0.1396 2.7489 0.1875
0.0577 � 0.0239i 0.0039 � 0.0039i 0.0504 2.7489 0.0577 � 0.0239i
�0.0442 þ 0.0442i �0.0009 þ 0.0022i 0.0494 2.7489 �0.0442 þ 0.0442i
0.0239 � 0.0577i �0.0000 þ 0.0357i 0.0481 �0.3927 0.0239 � 0.0577i
�0.1875i 0.0085 þ 0.0205i 0.1524 �0.3927 �0.1875i
�0.0239 � 0.0577i �0.0130 � 0.0130i 0.0519 2.7489 �0.0239 � 0.0577i
0.0442 þ 0.0442i 0.0134 þ 0.0056i 0.0519 2.7489 0.0442 þ 0.0442i
�0.0577 � 0.0239i 0.0759 þ 0.0000i 0.0516 �0.3927 �0.0577 � 0.0239i
�0.1875 0.0337 � 0.0140i 0.1539 �0.3927 �0.1875
�0.0577 þ 0.0239i �0.0229 þ 0.0229i 0.0493 2.7489 �0.0577 þ 0.0239i
0.0442 � 0.0442i 0.0108 � 0.0261i 0.0504 2.7489 0.0442 � 0.0442i
�0.0239 þ 0.0577i �0.0000 � 0.1193i 0.0512 �0.3927 �0.0239 þ 0.0577i
0.1875i �0.0196 � 0.0474i 0.1437 �0.3927 0.1875i
0.0239 þ 0.0577i 0.0335 þ 0.0335i 0.0434 2.7489 0.0239 þ 0.0577i
�0.0442 � 0.0442i �0.0400 � 0.0165i 0.0452 �0.3927 �0.0442 � 0.0442i
0.0577 þ 0.0239i 1.3342 1.5240 0 0.0577 þ 0.0239i

Table 1.
Filter parameters
obtained by the
proposed algorithms,
for k ¼ 0 : 7.

Table 2.
Obtained opto-
geometrical
parameters of the
designed filter,
for k ¼ 0 : 15.
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filter coefficients Ak are calculated in [18]. The coefficients Bk of the complementary
component are calculated using the procedure described in Section 4 whereas the
orientation angles, the phase shift introduced by each stage and the coefficients bAk of the
obtained impulse response are calculated using the algorithms described in Section 3.
Table 3 illustrates the coefficients Bk; relative angles θk, the phase shifts bk and the
coefficients bAk of the obtained impulse response.

We can also notice that the calculated coefficients bAk match exactly the desired
coefficients Ak.

5.4 Particle Swarm Optimization (PSO)
The opto-geometrical parameters of the birefringent filter can also be calculated using the
heuristic evolutionary optimization algorithms. The cost function to be minimized is
expressed according to the optical filter output αnk calculated by the forward algorithms and
the desired output for both above cases.

f ðθk; bkÞ ¼ 1

n

Xn

k¼0

�
αn
k � Ak

�2
(28)

The parameters to be determined are the relative angle θk of each crystal and the retardation
introduced by each compensator bk. In this work, we can take as example the PSO algorithm,
which is the famous one of the heuristic evolutionary optimization algorithms [21]. Suppose
that the search space is a n-dimensional space, then the ith particle can be represented by a n-
dimensional vector, xi ¼ fxi1; xi2; . . . ::; xing, and velocity vi ¼ fvi1; vi2; . . . ::; ving, where
i ¼ 1; 2; . . . ; p and p denotes the size of the swarm. In each generation t þ 1, particle i adjusts

its velocity vtþ1
ik and position xtþ1

ik for each dimension d by referring to the personal best

position pbesttik and the swarm’s best position gbesttik as follows [22]:

vtþ1
ik ¼ wvtik þ c1r

t
1

�
pbest

t
ik � xtik

�þ c2r
t
2

�
gbest

t
ik � xtik

�
(29)

xtþ1
ik ¼ xtik þ vtik (30)

where w is the inertia weight, c1 and c2 are positive constants, called acceleration
coefficients, r1 and r2 are two random numbers in the range [0,1]. The algorithm searches
for the best solution through an iterative process by minimizing the above cost function.
The positions fxikg are the parameters of the optical filter such as the relative angles for
filters with real coefficients and the relative angles with their phase shifts for filters with
complex coefficients. If the algorithm converges afterm iterations, the global best gbestmik is
the position that has produced the smallest cost function value of all positions occupied by
the swarm through last iteration m. Consequently, we can retain the global best gbestmik
where k ¼ 0; 1; . . . ; nas the optimal filter coefficients. We consider the simplest example of
the above three examples, flat-top birefringent interleaver filter, which is a filter with real
coefficients that needs to determine only the relative angles θk. Thus, the cost function
becomes f ðθkÞ ¼ ð1=nÞ Pn

k¼0ðαn
k −AkÞ2 where αn

k is the output of the optical filter
calculated by the first forward algorithm and A ¼ fAkg is the desired output of the first
example as indicated in the first column of the Table 1. The PSO parameters are as follows:
population size, npop ¼ 100; inertia weight, w ¼ 0:99; acceleration coefficients,
c1 ¼ 1:5; c2 ¼ 2:0; lower and upper bound of variables, varmin ¼ −1:5; varmax ¼ 1:5;
lower and upper bound of velocities velmin ¼ −0:3; velmax ¼ 0:3. Table 4 shows the
obtained relative angles and their corresponding filter coefficient using PSOwith different
number of iterations.
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Table 3.
Coefficients Bk, relative
angles θk, the phase
shifts bk and the
obtained coefficients
Âk, for k ¼ 0 : 20.
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Compared to the proposed algorithms, the PSO with 50,000 iterations and for the simplest
example it could not even find the exact coefficients of the desired response. As a result, the
heuristic evolutionary optimization algorithms are not suitable for birefringent FIR filter
design.

6. Discussion
As shown above in the Section 5, simulation results and comparisons with a state of the art
methods show that the proposed algorithm is faster, easier andmore accurate to calculate the
optical structure of the birefringent filters. In [18,7] the procedure of the parameter calculation
is complicated, not clear and needs a great number of basic arithmetic operations (addition,
subtraction, multiplication and division) compared to our algorithm. For example the phase
shift in [18] is expressed as a ratio between two quantities and needs four multiplications, two
additions and one division, whereas in our algorithm only two multiplications and one
addition are required as expressed above in the second backward algorithm. In addition, the
algorithm propose by [7] need two recurrent equations to calculate the coefficients of the
ðk− 1Þth stage from ones of the kth stage. However, in the proposed algorithm we have two

coefficients (αk−1k−1 and βk−10 ) calculated as a ratio between two numbers in each stage and the

two last coefficients (α00 and β
0
0) are also expressed as a simple ratio between two numbers as

illustrated in the first backward algorithm. Moreover the coefficients Bk are calculated using
FIR filter design techniques in [7], which needs a heavy computation and lacks accuracy
compared to the proposed algorithm. However, we have developed a concise and accurate
algorithm to calculate the coefficients, Bk, of the complementary component. The forward
algorithm is used to simulate the optical filter by calculating the filter coefficients from the
relative angles and the phase shifts obtained using the backward algorithm and compare
them with the desired ones. It may be also used with the classical optimisation methods and
the heuristic evolutionary optimization algorithms where the cost function to be minimized is
a function of the filter parameters, which is easily calculated using the forward algorithm.
The proposed approach is also compared with the PSO algorithm, which is the famous one of
the heuristic evolutionary optimization algorithms. As illustrated in Table 4, the PSO with
50,000 iterations and for the simplest example it could not even find the exact coefficients of
the desired response. Moreover, the evolutionary optimization methods are realized by
multiple iterations of updating parameters until convergence. Consequently, they are also not
competent in designing optical FIR filters with complex coefficients where the phase shifts
are included due to their heavy computation and unguaranteed convergence. On the other
hand, the proposed algorithm does well in designing optical FIR filters of any desired spectral
shape and with any order using a simple iterative calculation with a minimum number of
arithmetic operations.

Ak Iterations5 10,000 Iterations5 30,000 Iterations5 50,000
θk (rad) bAk θk (rad) bAk θk (rad) bAk

0.0197 0.4315 0.0197 1.0926 0.0197 1.4735 0.0197
�0.0587 �1.1422 �0.0588 1.1563 �0.0587 0.0669 �0.0587
0.0043 0.6651 0.0039 �0.5953 0.0042 0.3078 0.0042
0.5347 0.7994 0.5341 �0.8517 0.5345 �1.0761 0.5346
0.5347 0.8004 0.5341 �0.8517 0.5345 �1.0761 0.5346
0.0043 0.6637 0.0040 �0.5953 0.0042 0.3079 0.0042

�0.0587 �1.1424 �0.0588 1.1563 �0.0587 0.0670 �0.0587
0.0197 �1.1370 0.0198 �0.4783 0.0197 �0.0973 0.0197

Table 4.
filter coefficient using

PSO with different
number of iterations,

for k ¼ 0 : 7.
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7. Conclusion
In this paper, iterative algorithms for designing optical FIR filters with any specified spectral
response have been presented. They have been tested using different examples and it is
observed that they provide exact results in many applications such as asymmetric flat-top
birefringent filter, multi-channel selector, and dispersion compensation in wavelength
division multiplexed (WDM) communication systems. However, for PSO based birefringent
filters, the algorithmmust be runmany times with a large number of iterations to obtain good
results. Moreover, the evolutionary optimization algorithms are extremely sensitive to
starting points and the objective function is multimodal and highly non-lineare, which make
themvery expensive in terms of execution time. In the proposed algorithms, such complicated
problem is reduced to find only the roots of polynomial of degree 2n and the exact solution is
determined using iterative algorithms with only a few number of operations.

Finally, knowing that liquid crystal tunable filters are used in optical telecommunication
systems and they are also used in multispectral and hyperspectral imaging systems because
of their high image quality and rapid tuning over a broad spectral range. Consequently and as
a future work, we will try to replace the variable sections of the filter structure with liquid
crystal cells whose birefringence can be controlled and tunedwith a small voltage. In this way
and keeping the same filter structure, we propose to synthesize liquid crystal tunable filters
by tuning only the birefringence of the liquid crystal using the same iterative algorithms.
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