BAYESIAN MODEL CHOICE IN SPATIAL ECONOMETRICS

and

Spatial and Spatiotemporal Econometrics

ISBN: 978-0-76231-148-4, eISBN: 978-1-84950-301-3

ISSN: 0731-9053

Publication date: 30 December 2004

Abstract

Within spatial econometrics a whole family of different spatial specifications has been developed, with associated estimators and tests. This lead to issues of model comparison and model choice, measuring the relative merits of alternative specifications and then using appropriate criteria to choose the “best” model or relative model probabilities. Bayesian theory provides a comprehensive and coherent framework for such model choice, including both nested and non-nested models within the choice set. The paper reviews the potential application of this Bayesian theory to spatial econometric models, examining the conditions and assumptions under which application is possible. Problems of prior distributions are outlined, and Bayes factors and marginal likelihoods are derived for a particular subset of spatial econometric specifications. These are then applied to two well-known spatial data-sets to illustrate the methods. Future possibilities, and comparisons with other approaches to both Bayesian and non-Bayesian model choice are discussed.

Citation

Hepple, L. (2004), "BAYESIAN MODEL CHOICE IN SPATIAL ECONOMETRICS", Lesage, J. and Kelley Pace, R. (Ed.) Spatial and Spatiotemporal Econometrics (Advances in Econometrics, Vol. 18), Emerald Group Publishing Limited, Bingley, pp. 101-126. https://doi.org/10.1016/S0731-9053(04)18003-1

Download as .RIS

Publisher

:

Emerald Group Publishing Limited

Copyright © 2004, Emerald Group Publishing Limited

Please note you might not have access to this content

You may be able to access this content by login via Shibboleth, Open Athens or with your Emerald account.
If you would like to contact us about accessing this content, click the button and fill out the form.