Search results

1 – 10 of 16
Article
Publication date: 4 July 2023

Yixing Ding, Yanmin Jia, Jiangyue Li, Huiming Li and Xiaobo Zhang

The purpose of this study is to investigate the effects of stud height, stud diameter, ultimate stress of stud and concrete strength on the static behaviour of studs in push-off…

Abstract

Purpose

The purpose of this study is to investigate the effects of stud height, stud diameter, ultimate stress of stud and concrete strength on the static behaviour of studs in push-off tests based on the ductile fracture theory.

Design/methodology/approach

Push-off tests of headed stud shear connectors with different heights and diameters used in concrete of various strengths were designed and implemented. A finite element model was established based on a ductile fracture criterion of ML15 cold-heading steel with stress triaxiality and Lode angle parameter. Based on the results of the parametric study of the numerical model, equations were proposed to evaluate the effect of stud height hs, stud area As, concrete strength fc and stud ultimate strength fsu used in concrete of various strengths on the static behaviour of studs.

Findings

The typical failure phenomenon observed among the test specimens was the fracture of the shank of studs. The microscopic images of the stud fracture surfaces and the verified finite element model indicate that the studs were fractured as a result of the combined action of tension and shear.

Originality/value

A new method for calculating ultimate load Pu and ultimate slip Su is proposed in this paper. In the method, Pu is linearly related to fsu0.2143, As0.7790, hs0.0974, fc0.2065. Su is linearly related to fsu1.078, As0.4681, hs(−0.3135), fc(−0.3480).

Details

International Journal of Structural Integrity, vol. 14 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 30 January 2019

Jinliang Liu and Yanmin Jia

Cement fly ash gravel (CFG) pile composite foundation is an effective and economic foundation treatment approach, which is significant to build foundation, subgrade construction…

Abstract

Purpose

Cement fly ash gravel (CFG) pile composite foundation is an effective and economic foundation treatment approach, which is significant to build foundation, subgrade construction, and so forth. The purpose of this paper is to present a research on the temperature behaviours of high-latitude and low-altitude island permafrost under CFG pile composite foundation treatment.

Design/methodology/approach

In the process of CFG pile construction, the temperature of permafrost and pile body was monitored using the temperature sensors. The influence of subgrade height and atmospheric temperature cycle on permafrost temperature was analysed by finite element simulation.

Findings

In the process of CFG pile construction, the change curve of pile temperature and the temperature of permafrost beside pile following time can be divided into six stages, and the duration of these stages is at least one month. The temperature variation of permafrost while constructing subgrade in FEM has a good agreement with the results of field temperature monitoring. The height of subgrade not only affects the maximum temperature increase of permafrost and the re-frozen time of permafrost after the construction of CFG pile composite foundation, but also affects the temperature variation amplitude of permafrost during atmospheric temperature cycle.

Originality/value

The research will provide a reference for the design on the CFG pile composite foundation used for island permafrost and guarantee the stability of the structure; thus, it has an important significance.

Details

International Journal of Structural Integrity, vol. 10 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 16 April 2024

Chaofan Wang, Yanmin Jia and Xue Zhao

Prefabricated columns connected by grouted sleeves are increasingly used in practical projects. However, seismic fragility analyses of such structures are rarely conducted…

Abstract

Purpose

Prefabricated columns connected by grouted sleeves are increasingly used in practical projects. However, seismic fragility analyses of such structures are rarely conducted. Seismic fragility analysis has an important role in seismic hazard evaluation. In this paper, the seismic fragility of sleeve connected prefabricated column is analyzed.

Design/methodology/approach

A model for predicting the seismic demand on sleeve connected prefabricated columns has been created by incorporating engineering demand parameters (EDP) and probabilities of seismic failure. The incremental dynamics analysis (IDA) curve clusters of this type of column were obtained using finite element analysis. The seismic fragility curve is obtained by regression of Exponential and Logical Function Model.

Findings

The IDA curve cluster gradually increased the dispersion after a peak ground acceleration (PGA) of 0.3 g was reached. For both columns, the relative displacement of the top of the column significantly changed after reaching 50 mm. The seismic fragility of the prefabricated column with the sleeve placed in the cap (SPCA) was inadequate.

Originality/value

The sleeve was placed in the column to overcome the seismic fragility of prefabricated columns effectively. In practical engineering, it is advisable to utilize these columns in regions susceptible to earthquakes and characterized by high seismic intensity levels in order to mitigate the risk of structural damage resulting from ground motion.

Details

International Journal of Structural Integrity, vol. 15 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 13 August 2018

Jinliang Liu, Yanmin Jia, Guanhua Zhang and Jiawei Wang

During service period, due to the overload or other non-load factors, diagonal cracks of the pre-stressed concrete beam are seriously affecting the safety of the bridge structure…

Abstract

Purpose

During service period, due to the overload or other non-load factors, diagonal cracks of the pre-stressed concrete beam are seriously affecting the safety of the bridge structure. The purpose of this paper is to quickly realize the shear bearing capacity and shear stiffness through maximum width of the diagonal cracks and make correct judgments.

Design/methodology/approach

Through the shear failure test of four test beams, collecting data of diagonal cracks and shear stiffness loss value. According to the deformation curve of the shear stiffness, and combined with the calculation formula of the maximum width of diagonal cracks, the formula for calculating the effective shear stiffness based on the maximum width of diagonal cracks is deduced, then the results are verified by test data. Data regression method is used to establish the effective shear stiffness loss ratio calculation formula, the maximum width of diagonal cracks used as a variable factor, and the accuracy of this formula is verified by comparing the shear failure test results of pre-stressed hollow plates.

Findings

With the increase in width of the diagonal crack, the loss rate of shear stiffness of the concrete beams is initially fast and then becomes slow. The calculation formulae for shear stiffness based on the maximum width of the diagonal cracks were deduced, and the feasibility and accuracy of the formulae were verified by analysis and calculation of shear test data.

Originality/value

A method for quickly determine the shear stiffness loss of structures by using maximum width of the diagonal cracks is established, and using this method, engineers can quickly determine effective shear stiffness loss ratio, without complex calculations. So this method not only ensures the safety of human life, but also saves money.

Details

International Journal of Structural Integrity, vol. 9 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 13 August 2018

Jinliang Liu, Yanmin Jia, Guanhua Zhang and Jiawei Wang

In the freeze-thaw zone, the pre-stressed concrete of bridge structure will be damaged by freezing-thawing, the bearing capacity of structure will decrease and the safety will be…

Abstract

Purpose

In the freeze-thaw zone, the pre-stressed concrete of bridge structure will be damaged by freezing-thawing, the bearing capacity of structure will decrease and the safety will be affected. The purpose of this paper is to establish the time-dependent resistance degradation model of structure in the freeze-thaw zone, and analysis the structural reliability and remaining service life in different freeze-thaw zones.

Design/methodology/approach

First, according to the theory of structural design, a calculation model of the resistance of pre-stressed concrete structures in f freeze-thaw zone is established. Second, the time-dependent resistance model was verified by the test beam bending failure test results done by the research group, which has been in service for 20 years in freeze-thaw zone. Third, using JC algorithm in MATLAB to calculate the index on the reliability of pre-stressed concrete structure in frozen thawed zones, forecasting the s remaining service life of structure.

Findings

First, the calculation model of the resistance of pre-stressed concrete structures in freeze-thaw zone is accurate and it has excellent applicability. Second, the structural resistance deterioration time in Wet-Warm-Frozen Zone is the earliest. Third, once the pre-stressed reinforcement rusts, the structural reliability index will reach limit value quickly. Finally, the remaining service life of structure meets the designed expectation value only in a few of freeze-thaw zones in China.

Originality/value

The research will provide a reference for the design on the durability of a pre-stressed concrete structure in the freeze-thaw zone. In order to verify the security of pre-stressed concrete structures in the freeze-thaw zone, engineers can use the model presented in this paper for durability checking, it has an important significance.

Details

International Journal of Structural Integrity, vol. 9 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 9 November 2021

Junming Xu, Yanmin Jia and Dongwei Liang

Prefabricated pier technology has the advantages of quick construction time, relatively little traffic interference and relatively small environmental impact. However, its…

Abstract

Purpose

Prefabricated pier technology has the advantages of quick construction time, relatively little traffic interference and relatively small environmental impact. However, its applicability under earthquake conditions is not yet fully understood. The seismic performance and influence parameters of a prefabricated concrete pier connected by embedded grouting sleeve (GS) in a pile cap are investigated in this study.

Design/methodology/approach

Two prefabricated pier scale model specimens with different reinforcement anchorage lengths and two comparative cast-in-place (CIP) pier model specimens are designed and manufactured for a seismic simulation shaking table. With the continuous increase of input ground motion strength, the changes in basic dynamic characteristics, damage development, acceleration and displacement variation laws, and pier bottom strain responses are compared among the specimen. The finite element software ABAQUS is used to simulate the test pier.

Findings

The crack location of the two prefabricated pier specimens is almost the same as that of the CIP pier specimens; CIP pier specimens show more penetrated cracks than prefabricated pier specimens, as well as an earlier crack penetration time. The acceleration, displacement and strain response of the CIP pier specimens are more affected by earthquake activity than those of the prefabricated pier specimens. The acceleration, displacement and strain responses of the two prefabricated piers are nearly identical. The finite element results are in close agreement with the acceleration and displacement response data collected from the test, which verifies the feasibility of the finite element model established in ABAQUS.

Originality/value

A GS connection method is adopted for the prefabricated pier, and on the premise of meeting the minimum reinforcement anchorage length required by the code, this study explores the influences of different reinforcement anchorage lengths on the seismic performance of prefabricated piers in high-intensity areas. A shaking table loading test is used to simulate the real changes of the structure under the earthquake. This work may provide a valuable reference for the design and seismic performance analysis of prefabricated pier, particularly in terms of seismic stability.

Details

International Journal of Structural Integrity, vol. 13 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 9 April 2018

Jinliang Liu, Yanmin Jia, Guanhua Zhang and Jiawei Wang

During service period, due to the overload or other non-load factors, cracks of the pre-stressed concrete beam are seriously affecting the safety of the bridge structure. The…

Abstract

Purpose

During service period, due to the overload or other non-load factors, cracks of the pre-stressed concrete beam are seriously affecting the safety of the bridge structure. The purpose of this paper is to quickly realize the bearing capacity and the loss of the section stiffness through fracture characteristics and make correct judgments.

Design/methodology/approach

Through the flexural failure test of two test beams: collecting data of fracture characteristics and section stiffness loss value. According to the fracture characteristic data, the flexural stiffness of the section is obtained by the nonlinear calculation method, and the results are verified by test data. Data regression method is used to establish the section flexural stiffness loss ratio calculation formula, nominal tensile strain at the bottom edge of the cross-section used as a variable factor, and the accuracy of this formula is verified by comparing the flexural failure test results of pre-stressed hollow plates.

Findings

The loss of the flexural stiffness of section shows the decrease trend of first-fast-then-slow and the structural stiffness is sensitive to the initial cracking of beam. The calculation formula on the loss ratio of the flexural stiffness of section established with the nominal tensile stress at the bottom edge of beam as a variable is accurate and feasible, it realizes the possibility of assessing the stiffness loss of pre-stressed concrete structure by adopting the statistic parameters on crack characteristics.

Originality/value

A method for quickly determine the stiffness loss of structures by using fracture characteristics is established, and using this method, engineers can quickly determine whether a bridge is a dangerous bridge, without loading test. So, this method not only ensures the safety of human life, but also saves money.

Details

International Journal of Structural Integrity, vol. 9 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 December 2018

Jinliang Liu, Yanmin Jia, Guanhua Zhang and Jiawei Wang

The calculation of the crack width is necessary for the design of prestressed concrete (PC) members. The purpose of this paper is to develop a numerical model based on the…

Abstract

Purpose

The calculation of the crack width is necessary for the design of prestressed concrete (PC) members. The purpose of this paper is to develop a numerical model based on the bond-slip theory to calculate the crack width in PC beams.

Design/methodology/approach

Stress calculation method for common reinforcement after beam crack has occurred depends on the difference in the bonding performance between prestressed reinforcement and common reinforcement. A numerical calculation model for determining the crack width in PC beams is developed based on the bond-slip theory, and verified using experimental data. The calculation values obtained by the proposed numerical model and code formulas are compared, and the applicability of the numerical model is evaluated.

Findings

The theoretical analysis and experimental results verified that the crack width of PC members calculated based on the bond-slip theory in this study is reasonable. Furthermore, the stress calculation method for the common reinforcement is verified. Compared with the model calculation results obtained in this study, the results obtained from code formulas are more conservative.

Originality/value

The numerical calculation model for crack width proposed in this study can be used by engineers as a reference for calculating the crack width in PC beams to ensure the durability of the PC member.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 17 July 2019

Guanhua Zhang, Jiawei Wang, Jinliang Liu, Yanmin Jia and Jigang Han

During service, cracks are caused in prestressed concrete beams owing to overload or other non-load factors. These cracks significantly affect the safety of bridge structures. The…

Abstract

Purpose

During service, cracks are caused in prestressed concrete beams owing to overload or other non-load factors. These cracks significantly affect the safety of bridge structures. The purpose of this paper is to carry out a non-linear iterative calculation for a section of a prestressed concrete beam and obtain the change in stiffness after the section cracks.

Design/methodology/approach

The existing stress of prestressed reinforcement was measured by performing a boring stress release test on two pieces of an in-service 16 m prestressed concrete hollow plate. Considering the non-linear effects of materials, the calculation model of the loss in the flexural stiffness of the prestressed concrete beam was established based on the existing prestress. The accuracy of the non-linear calculation method and the results obtained for the section were verified by conducting a bending destruction test on two pieces of the 16 m prestressed concrete hollow plate in the same batch and by utilising the measured strain and displacement data on the concrete at the top edge of the midspan section under all load levels.

Findings

The flexural stiffness of the section decreases rapidly at first and then gradually, and structural rigidity is sensitive to the initial cracking of the beam. The method for calculating the loss in the flexural stiffness of the section established with the existing stress of prestressed reinforcement as a parameter is accurate and feasible. It realizes the possibility of assessing the loss in the rigidity of a prestressed concrete structure by adopting the existing stress of prestressed reinforcement as a parameter.

Originality/value

A method for quickly determining the loss in the stiffness of structures using existing prestress is established. By employing this method, engineers can rapidly determine whether a bridge is dangerous or not without performing a loading test. Thus, this method not only ensures the safety of human life, but also reduces the cost of testing.

Details

International Journal of Structural Integrity, vol. 10 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 October 2018

Jiawei Wang, Yanmin Jia, Guanhua Zhang, Jigang Han and Jinliang Liu

Most existing studies are confined to model beam tests, which cannot reflect the actual strengthening effects provided by prestressed carbon-fiber-reinforced polymer (CFRP) plates…

Abstract

Purpose

Most existing studies are confined to model beam tests, which cannot reflect the actual strengthening effects provided by prestressed carbon-fiber-reinforced polymer (CFRP) plates to existing bridges. Hence, the actual capacity for strengthening existing bridges with prestressed CFRP plates is becoming an important concern for researchers. The paper aims to discuss these issues.

Design/methodology/approach

Static load tests of in-service prestressed concrete hollow slabs before and after strengthening are conducted. Based on the results of the tests, the failure characteristics, failure mechanism and bending performance of the slabs are compared and analyzed. Nonlinear finite element method is also used to calculate the flexural strength of the strengthened beams prestressed with CFRP plates.

Findings

Test results show that prestressed CFRP plate strengthening technology changes the failure mode of hollow slabs, delays the development of deflection and cracks, raises cracking and ultimate load-carrying capacity and remarkably improves mechanical behavior of the slab. In addition, the nonlinear finite element analyses are in good agreement with the test results.

Originality/value

Strengthening with prestressed CFRP plates has greater advantages compared to traditional CFRP plate strengthening technology and improves active material utilization. The presented finite element method can be applied in the flexural response calculations of strengthened beams prestressed with CFRP plates. The research results provide technical basis for maintenance and reinforcement design of existing bridges.

Details

International Journal of Structural Integrity, vol. 9 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 16