Search results

1 – 6 of 6
Article
Publication date: 19 November 2021

Yanbiao Zou and Hengchang Zhou

This paper aims to propose a weld seam tracking method based on proximal policy optimization (PPO).

Abstract

Purpose

This paper aims to propose a weld seam tracking method based on proximal policy optimization (PPO).

Design/methodology/approach

By constructing a neural network based on PPO and using the reference image block and the image block to be detected as the dual-channel input of the network, the method predicts the translation relation between the two images and corrects the location of feature points in the weld image. The localization accuracy estimation network (LAE-Net) is built to update the reference image block during the welding process, which is helpful to reduce the tracking error.

Findings

Off-line simulation results show that the proposed algorithm has strong robustness and performs well on the test set of curved seam images with strong noise. In the welding experiment, the movement of welding torch is stable, the molten material is uniform and smooth and the welding error is small, which can meet the requirements of industrial production.

Originality/value

The idea of image registration is applied to weld seam tracking, and the weld seam tracking network is built on the basis of PPO. In order to further improve the tracking accuracy, the LAE-Net is constructed and the reference images can be updated.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 October 2018

Yanbiao Zou and Xiangzhi Chen

This paper aims to propose a hand–eye calibration method of arc welding robot and laser vision sensor by using semidefinite programming (SDP).

Abstract

Purpose

This paper aims to propose a hand–eye calibration method of arc welding robot and laser vision sensor by using semidefinite programming (SDP).

Design/methodology/approach

The conversion relationship between the pixel coordinate system and laser plane coordinate system is established on the basis of the mathematical model of three-dimensional measurement of laser vision sensor. In addition, the conversion relationship between the arc welding robot coordinate system and the laser vision sensor measurement coordinate system is also established on the basis of the hand–eye calibration model. The ordinary least square (OLS) is used to calculate the rotation matrix, and the SDP is used to identify the direction vectors of the rotation matrix to ensure their orthogonality.

Findings

The feasibility identification can reduce the calibration error, and ensure the orthogonality of the calibration results. More accurate calibration results can be obtained by combining OLS + SDP.

Originality/value

A set of advanced calibration methods is systematically established, which includes parameters calibration of laser vision sensor and hand–eye calibration of robots and sensors. For the hand–eye calibration, the physics feasibility problem of rotating matrix is creatively put forward, and is solved through SDP algorithm. High-precision calibration results provide a good foundation for future research on seam tracking.

Details

Industrial Robot: An International Journal, vol. 45 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 10 May 2023

Yanbiao Zou, Tao Liu, Tie Zhang and Hubo Chu

This paper aims to propose a learning exponential jerk trajectory planning to suppress the residual vibrations of industrial robots.

Abstract

Purpose

This paper aims to propose a learning exponential jerk trajectory planning to suppress the residual vibrations of industrial robots.

Design/methodology/approach

Based on finite impulse response filter technology, a step signal with a proper amplitude first passes through two linear filters and then performs exponential filter shaping to obtain an exponential jerk trajectory and cancel oscillation modal. An iterative learning strategy designed by gradient descent principle is used to adjust the parameters of exponential filter online and achieve the maximum vibration suppression effect.

Findings

By building a SCARA robot experiment platform, a series of contrast experiments are conducted. The results show that the proposed method can effectively suppress residual vibration compared to zero vibration shaper and zero vibration and derivative shaper.

Originality/value

The idea of the adopted iterative leaning strategy is simple and reduces the computing power of the controller. A cheap acceleration sensor is available because it just needs to measure vibration energy to feedback. Therefore, the proposed method can be applied to production practice.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 August 2017

Yanbiao Zou, Jinchao Li and Xiangzhi Chen

This paper aims to propose a set of six-axis robot arm welding seam tracking experiment platform based on Halcon machine vision library to resolve the curve seam tracking issue.

Abstract

Purpose

This paper aims to propose a set of six-axis robot arm welding seam tracking experiment platform based on Halcon machine vision library to resolve the curve seam tracking issue.

Design/methodology/approach

Robot-based and image coordinate systems are converted based on the mathematical model of the three-dimensional measurement of structured light vision and conversion relations between robot-based and camera coordinate systems. An object tracking algorithm via weighted local cosine similarity is adopted to detect the seam feature points to prevent effectively the interference from arc and spatter. This algorithm models the target state variable and corresponding observation vector within the Bayes framework and finds the optimal region with highest similarity to the image-selected modules using cosine similarity.

Findings

The paper tests the approach and the experimental results show that using metal inert-gas (MIG) welding with maximum welding current of 200A can achieve real-time accurate curve seam tracking under strong arc light and splash. Minimal distance between laser stripe and welding molten pool can reach 15 mm, and sensor sampling frequency can reach 50 Hz.

Originality/value

Designing a set of six-axis robot arm welding seam tracking experiment platform with a system of structured light sensor based on Halcon machine vision library; and adding an object tracking algorithm to seam tracking system to detect image feature points. By this technology, this system can track the curve seam while welding.

Details

Industrial Robot: An International Journal, vol. 44 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 December 2020

Meng Xiao, Tie Zhang, Yanbiao Zou and Shouyan Chen

The purpose of this paper is to propose a robot constant grinding force control algorithm for the impact stage and processing stage of robotic grinding.

Abstract

Purpose

The purpose of this paper is to propose a robot constant grinding force control algorithm for the impact stage and processing stage of robotic grinding.

Design/methodology/approach

The robot constant grinding force control algorithm is based on a grinding model and iterative algorithm. During the impact stage, active disturbance rejection control is used to plan the robotic reference contact force, and the robot speed is adjusted according to the error between the robot’s real contact force and the robot’s reference contact force. In the processing stage, an RBF neural network is used to construct a model with the robot's position offset displacement and controlled output, and the increment of control parameters is estimated according to the RBF neural network model. The error of contact force and expected force converges gradually by iterating the control parameters online continuously.

Findings

The experimental results show that the normal force overshoot of the robot based on the grinding model and iterative algorithm is small, and the processing convergence speed is fast. The error between the normal force and the expected force is mostly within ±3 N. The normal force based on the force control algorithm is more stable than the normal force based on position control, and the surface roughness of the processed workpiece has also been improved, the Ra value compared with position control has been reduced by 24.2%.

Originality/value

As the proposed approach obtains a constant effect in the impact stage and processing stage of robot grinding and verified by the experiment, this approach can be used for robot grinding for improved machining accuracy.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 August 2019

Lin Li, Jiadong Xiao, Yanbiao Zou and Tie Zhang

The purpose of this paper is to propose a precise time-optimal path tracking approach for robots under kinematic and dynamic constraints to improve the work efficiency of robots…

Abstract

Purpose

The purpose of this paper is to propose a precise time-optimal path tracking approach for robots under kinematic and dynamic constraints to improve the work efficiency of robots and guarantee tracking accuracy.

Design/methodology/approach

In the proposed approach, the robot path is expressed by a scalar path coordinate and discretized into N points. The motion between two neighbouring points is assumed to be uniformly accelerated motion, so the time-optimal trajectory that satisfies constraints is obtained by using equations of uniformly accelerated motion instead of numerical integration. To improve dynamic model accuracy, the Coulomb and viscous friction are taken into account (while most publications neglect these effects). Furthermore, an iterative learning algorithm is designed to correct model-plant mismatch by adding an iterative compensation item into the dynamic model at each discrete point before trajectory planning.

Findings

An experiment shows that compared with the sequential convex log barrier method, the proposed numerical integration-like (NI-like) approach has less computation time and a smoother planning trajectory. Compared with the experimental results before iteration, the torque deviation, tracking error and trajectory execution time are reduced after 10 iterations.

Originality/value

As the proposed approach not only yields a time-optimal solution but also improves tracking performance, this approach can be used for any repetitive robot tasks that require more rapidity and less tracking error, such as assembly.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 6 of 6