Search results

1 – 3 of 3
Article
Publication date: 16 April 2024

Kunpeng Shi, Guodong Jin, Weichao Yan and Huilin Xing

Accurately evaluating fluid flow behaviors and determining permeability for deforming porous media is time-consuming and remains challenging. This paper aims to propose a novel…

Abstract

Purpose

Accurately evaluating fluid flow behaviors and determining permeability for deforming porous media is time-consuming and remains challenging. This paper aims to propose a novel machine-learning method for the rapid estimation of permeability of porous media at different deformation stages constrained by hydro-mechanical coupling analysis.

Design/methodology/approach

A convolutional neural network (CNN) is proposed in this paper, which is guided by the results of finite element coupling analysis of equilibrium equation for mechanical deformation and Boltzmann equation for fluid dynamics during the hydro-mechanical coupling process [denoted as Finite element lattice Boltzmann model (FELBM) in this paper]. The FELBM ensures the Lattice Boltzmann analysis of coupled fluid flow with an unstructured mesh, which varies with the corresponding nodal displacement resulting from mechanical deformation. It provides reliable label data for permeability estimation at different stages using CNN.

Findings

The proposed CNN can rapidly and accurately estimate the permeability of deformable porous media, significantly reducing processing time. The application studies demonstrate high accuracy in predicting the permeability of deformable porous media for both the test and validation sets. The corresponding correlation coefficients (R2) is 0.93 for the validation set, and the R2 for the test set A and test set B are 0.93 and 0.94, respectively.

Originality/value

This study proposes an innovative approach with the CNN to rapidly estimate permeability in porous media under dynamic deformations, guided by FELBM coupling analysis. The fast and accurate performance of CNN underscores its promising potential for future applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 April 2020

Xiaoliang Qian, Jing Li, Jianwei Zhang, Wenhao Zhang, Weichao Yue, Qing-E Wu, Huanlong Zhang, Yuanyuan Wu and Wei Wang

An effective machine vision-based method for micro-crack detection of solar cell can economically improve the qualified rate of solar cells. However, how to extract features which…

Abstract

Purpose

An effective machine vision-based method for micro-crack detection of solar cell can economically improve the qualified rate of solar cells. However, how to extract features which have strong generalization and data representation ability at the same time is still an open problem for machine vision-based methods.

Design/methodology/approach

A micro-crack detection method based on adaptive deep features and visual saliency is proposed in this paper. The proposed method can adaptively extract deep features from the input image without any supervised training. Furthermore, considering the fact that micro-cracks can obviously attract visual attention when people look at the solar cell’s surface, the visual saliency is also introduced for the micro-crack detection.

Findings

Comprehensive evaluations are implemented on two existing data sets, where subjective experimental results show that most of the micro-cracks can be detected, and the objective experimental results show that the method proposed in this study has better performance in detecting precision.

Originality/value

First, an adaptive deep features extraction scheme without any supervised training is proposed for micro-crack detection. Second, the visual saliency is introduced for micro-crack detection.

Details

Sensor Review, vol. 40 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 7 June 2021

Tamoor Khan, Jiangtao Qiu, Ameen Banjar, Riad Alharbey, Ahmed Omar Alzahrani and Rashid Mehmood

The purpose of this paper is to assess the impacts on production of five fruit crops from 1961 to 2018 of energy use, CO2 emissions, farming areas and the labor force in China.

1921

Abstract

Purpose

The purpose of this paper is to assess the impacts on production of five fruit crops from 1961 to 2018 of energy use, CO2 emissions, farming areas and the labor force in China.

Design/methodology/approach

This analysis applied the autoregressive distributed lag-bound testing (ARDL) approach, Granger causality method and Johansen co-integration test to predict long-term co-integration and relation between variables. Four machine learning methods are used for prediction of the accuracy of climate effect on fruit production.

Findings

The Johansen test findings have shown that the fruit crop growth, energy use, CO2 emissions, harvested land and labor force have a long-term co-integration relation. The outcome of the long-term use of CO2 emission and rural population has a negative influence on fruit crops. The energy consumption, harvested area, total fruit yield and agriculture labor force have a positive influence on six fruit crops. The long-run relationships reveal that a 1% increase in rural population and CO2 will decrease fruit crop production by −0.59 and −1.97. The energy consumption, fruit harvested area, total fruit yield and agriculture labor force will increase fruit crop production by 0.17%, 1.52%, 1.80% and 4.33%, respectively. Furthermore, uni-directional causality is correlated with the growth of fruit crops and energy consumption. Also, the results indicate that the bi-directional causality impact varies from CO2 emissions to agricultural areas to fruit crops.

Originality/value

This study also fills the literature gap in implementing ARDL for agricultural fruits of China, used machine learning methods to examine the impact of climate change and to explore this important issue.

Details

International Journal of Climate Change Strategies and Management, vol. 13 no. 2
Type: Research Article
ISSN: 1756-8692

Keywords

1 – 3 of 3