Search results

1 – 1 of 1
Article
Publication date: 8 January 2019

Sagar Saroha, Sawan S. Sinha and Sunil Lakshmipathy

In recent years, the partially averaged Navier–Stokes (PANS) methodology has earned acceptability as a viable scale-resolving bridging method of turbulence. To further enhance its…

Abstract

Purpose

In recent years, the partially averaged Navier–Stokes (PANS) methodology has earned acceptability as a viable scale-resolving bridging method of turbulence. To further enhance its capabilities, especially for simulating separated flows past bluff bodies, this paper aims to combine PANS with a non-linear eddy viscosity model (NLEVM).

Design/methodology/approach

The authors first extract a PANS closure model using the Shih’s quadratic eddy viscosity closure model [originally proposed for Reynolds-averaged Navier–Stokes (RANS) paradigm (Shih et al., 1993)]. Subsequently, they perform an extensive evaluation of the combination (PANS + NLEVM).

Findings

The NLEVM + PANS combination shows promising result in terms of reduction of the anisotropy tensor when the filter parameter (fk) is reduced. Further, the influence of PANS filter parameter f on the magnitude and orientation of the non-linear part of the stress tensor is closely scrutinized. Evaluation of the NLEVM + PANS combination is subsequently performed for flow past a square cylinder at Reynolds number of 22,000. The results show that for the same level of reduction in fk, the PANS + NLEVM methodology releases significantly more scales of motion and unsteadiness as compared to the traditional linear eddy viscosity model (LEVM) of Boussinesq (PANS + LEVM). The authors further demonstrate that with this enhanced ability the NLEVM + PANS combination shows much-improved predictions of almost all the mean quantities compared to those observed in simulations using LEVM + PANS.

Research limitations/implications

Based on these results, the authors propose the NLEVM + PANS combination as a more potent methodology for reliable prediction of highly separated flow fields.

Originality/value

Combination of a quadratic eddy viscosity closure model with PANS framework for simulating flow past bluff bodies.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 1 of 1