Search results

1 – 2 of 2
Article
Publication date: 3 August 2015

Sergiu Andrei Baetu, Alex H Barbat, Ioan Petru Ciongradi and Georgeta Baetu

The purpose of this paper is to investigate a reinforced concrete multi-storey building with dissipative structural walls. These walls can improve the behaviour of a tall…

Abstract

Purpose

The purpose of this paper is to investigate a reinforced concrete multi-storey building with dissipative structural walls. These walls can improve the behaviour of a tall multi-storey building. The authors’ main objective is to evaluate the damage of a building with dissipative walls in comparison with that of a building with solid walls.

Design/methodology/approach

In this paper, a comparative nonlinear dynamic analysis between a building with slit walls and then the same building with solid walls is performed by means of SAP2000 software and using a layer model. The solution to increase the seismic performance of a building with structural walls is to create slit zones with short connections in to the walls. The short connections are introduced as a link element with multi-linear pivot hysteretic plasticity behaviour. The hysteretic rules and parameters of these short connections were proposed by the authors and used in this analysis. In this study, the authors propose to evaluate the damage of a building with reinforced concrete slit walls with short connections using seismic analysis.

Findings

Using the computational model created by the authors for the slit wall, a seismic analysis of a multi-storey building with slit walls was done. From the results obtained, the advantages of the proposed model are observed.

Originality/value

Using a simple computational model, created by the authors, that consume low processing resources and reduces processing time, a nonlinear dynamic analysis on high-rise buildings was done. Unlike other studies on slit walls with short connections, which are focused mostly on the nonlinear dynamic behaviour of the short connections, in this paper the authors take into consideration the whole structural system, wall, connections and frames.

Details

Engineering Computations, vol. 32 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 April 2015

Sergiu Andrei Baetu, A H Barbat and Ioan Petru Ciongradi

The purpose of this paper is to investigate a dissipative reinforced concrete structural wall that can improve the behavior of a tall multi-storey building. The main objective is…

Abstract

Purpose

The purpose of this paper is to investigate a dissipative reinforced concrete structural wall that can improve the behavior of a tall multi-storey building. The main objective is to evaluate the damage of a dissipative wall in comparison with that of a solid wall.

Design/methodology/approach

In this paper, a comparative nonlinear dynamic analysis between a dissipative wall and a solid wall is performed by means of SAP2000 software and using a layer model. The solution to increase the seismic performance of a reinforced concrete structural wall is to create a slit zone with short connections. The short connections are introduced as a link element with multi-linear pivot hysteretic plasticity behavior. The behavior of these short connections is modeled using the finite element software ANSYS 12. In this study, the authors propose to evaluate the damage of reinforced concrete slit walls with short connections using seismic analysis.

Findings

Using the computational model created in the second section of the paper, a seismic analysis of a dissipative wall from a multi-storey building was done in the third section. From the results obtained, the advantages of the proposed model are observed.

Originality/value

A simple computational model was created that consume low processing resources and reduces processing time for a dynamic pushover analysis. Unlike other studies on slit walls with short connections, which are focussed mostly on the nonlinear dynamic behavior of the short connections, in this paper the authors take into consideration the whole structural system, wall and connections.

Details

Engineering Computations, vol. 32 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 2 of 2