Search results

1 – 2 of 2
Article
Publication date: 29 August 2023

Junjie Niu, Weimin Sang, Qilei Guo, Aoxiang Qiu and Dazhi Shi

This paper aims to propose a method of the safety boundary protection for unmanned aerial vehicles (UAVs) in the icing conditions.

66

Abstract

Purpose

This paper aims to propose a method of the safety boundary protection for unmanned aerial vehicles (UAVs) in the icing conditions.

Design/methodology/approach

Forty icing conditions were sampled in the continuous maximum icing conditions in the Appendix C of the Federal Aviation Regulation Part 25. Icing numerical simulations were carried out for the 40 samples and the anti-icing thermal load distribution in full evaporation mode were obtained. Based on the obtained anti-icing thermal load distribution, the surrogated model of the anti-icing thermal load distribution was established with proper orthogonal decomposition and Kriging interpolation. The weather research and forecasting (WRF) model was used for meteorological simulations to obtain the icing meteorological conditions in the target area. With the obtained icing conditions and surrogated model, the anti-icing thermal load distribution in the target area and the variation with time can be determined. According to the energy supply of the UAVs, the graded safety boundaries can be obtained.

Findings

The surrogated model can predict the effects of five factors, such as temperature, velocity, pressure, median volume diameter (MVD) and liquid water content (LWC), on the anti-icing thermal load quickly and accurately. The simulated results of the WRF mode agree well with the observed results. The method can obtain the graded safety boundaries.

Originality/value

The method has a reference significant for the safety of the UAVs with the limited energy supply in the icing conditions.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 8 September 2022

Yufeng Guo, Chuang Zhang, Lei Qi, Haixu Yu, Suzhen Liu and Liang Jin

The purpose of this study is to develop an electromagnetic loading method for online measurement of the acoustoelastic coefficients and bus bar plane stress.

Abstract

Purpose

The purpose of this study is to develop an electromagnetic loading method for online measurement of the acoustoelastic coefficients and bus bar plane stress.

Design/methodology/approach

A method based on the combination of electromagnetic loading and the acoustoelastic effect is proposed to realize online measurement of acoustoelastic coefficients and plane stress. Electromagnetic loading is performed on the bus bar specimen, and the acoustoelastic coefficients and the bus bar plane stress are obtained by the ultrasonic method. An electromagnetic loading experimental platform is designed to provide electromagnetic force to the metal plate, including an electromagnetic loading module, an ultrasonic testing module and a stress simulation module.

Findings

The feasibility of the proposed electromagnetic loading method is proved by verification experiments. The acoustoelastic coefficients and plane stress measured using the electromagnetic loading method are more accurate than those measured using the traditional method.

Originality/value

The proposed electromagnetic loading method provides a new study perspective and enables more accurate measurement of the acoustoelastic coefficients and plane stress. The study provides an important basis for evaluating the operation status of electrical equipment.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 2 of 2