Search results

1 – 10 of over 2000
Article
Publication date: 27 March 2009

Gary G. Yen and Brian Ivers

The purpose of this paper is to develop an effective and efficient approach to exploit meta‐heuristic in particle swarm optimization (PSO) for the job shop scheduling problem…

1471

Abstract

Purpose

The purpose of this paper is to develop an effective and efficient approach to exploit meta‐heuristic in particle swarm optimization (PSO) for the job shop scheduling problem (JSP), a class of NP‐hard optimization problems. The approach is to be built on a PSO with multiple independent swarms. PSO was inspired by bird flocking and animal social behaviors. The particles operate collectively like a swarm that flies through the hyperdimensional space to search for possible optimal solutions. The behavior of the particles is influenced by their tendency to learn from their personal past experience and from the success of their peers to adjust their flying speed and direction. Research in fusing the multiple‐swarm concept into PSO is well‐established in solving single objective optimization problems and multimodal problems.

Design/methodology/approach

This study examines the optimization of the JSP via a search space division scheme and use of the meta‐heuristic method of PSO by assigning each machine in a JSP an independent swarm of particles. The use of multiple swarms in PSO is motivated by the idea of “divide and conquer” to reduce the computational complexity incurred through solving a NP‐hard combinatorial optimization problem. The resulted design, JSP/PSO algorithm, fully exploits the computing power presented by the multiple‐swarm PSO.

Findings

Simulation experiments show that the proposed JSP/PSO algorithm can effectively solve the JSP problems from small to median size. If certain mechanism of information sharing between swarms can be incorporated, it is believed that the new design could offer even more computing power to tackle the large‐sized problems.

Originality/value

The proposed JSP/PSO algorithm is effective in solving JSPs. The proposed algorithm shows considerable promise when searching the space of non‐delay schedules. It demands relatively lower number of function evaluations compared to other state‐of‐the‐art. The drawback to the JSP/PSO is that the GT scheduling adopted is too computationally expensive. Future works will address this concern.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 2 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 22 August 2022

Qingxia Li, Xiaohua Zeng and Wenhong Wei

Multi-objective is a complex problem that appears in real life while these objectives are conflicting. The swarm intelligence algorithm is often used to solve such multi-objective…

Abstract

Purpose

Multi-objective is a complex problem that appears in real life while these objectives are conflicting. The swarm intelligence algorithm is often used to solve such multi-objective problems. Due to its strong search ability and convergence ability, particle swarm optimization algorithm is proposed, and the multi-objective particle swarm optimization algorithm is used to solve multi-objective optimization problems. However, the particles of particle swarm optimization algorithm are easy to fall into local optimization because of their fast convergence. Uneven distribution and poor diversity are the two key drawbacks of the Pareto front of multi-objective particle swarm optimization algorithm. Therefore, this paper aims to propose an improved multi-objective particle swarm optimization algorithm using adaptive Cauchy mutation and improved crowding distance.

Design/methodology/approach

In this paper, the proposed algorithm uses adaptive Cauchy mutation and improved crowding distance to perturb the particles in the population in a dynamic way in order to help the particles trapped in the local optimization jump out of it which improves the convergence performance consequently.

Findings

In order to solve the problems of uneven distribution and poor diversity in the Pareto front of multi-objective particle swarm optimization algorithm, this paper uses adaptive Cauchy mutation and improved crowding distance to help the particles trapped in the local optimization jump out of the local optimization. Experimental results show that the proposed algorithm has obvious advantages in convergence performance for nine benchmark functions compared with other multi-objective optimization algorithms.

Originality/value

In order to help the particles trapped in the local optimization jump out of the local optimization which improves the convergence performance consequently, this paper proposes an improved multi-objective particle swarm optimization algorithm using adaptive Cauchy mutation and improved crowding distance.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 28 March 2008

Stefan Janson, Daniel Merkle and Martin Middendorf

The purpose of this paper is to present an approach for the decentralization of swarm intelligence algorithms that run on computing systems with autonomous components that are…

1876

Abstract

Purpose

The purpose of this paper is to present an approach for the decentralization of swarm intelligence algorithms that run on computing systems with autonomous components that are connected by a network. The approach is applied to a particle swarm optimization (PSO) algorithm with multiple sub‐swarms. PSO is a nature inspired metaheuristic where a swarm of particles searches for an optimum of a function. A multiple sub‐swarms PSO can be used for example in applications where more than one optimum has to be found.

Design/methodology/approach

In the studied scenario the particles of the PSO algorithm correspond to data packets that are sent through the network of the computing system. Each data packet contains among other information the position of the corresponding particle in the search space and its sub‐swarm number. In the proposed decentralized PSO algorithm the application specific tasks, i.e. the function evaluations, are done by the autonomous components of the system. The more general tasks, like the dynamic clustering of data packets, are done by the routers of the network.

Findings

Simulation experiments show that the decentralized PSO algorithm can successfully find a set of minimum values for the used test functions. It was also shown that the PSO algorithm works well for different type of networks, like scale‐free network and ring like networks.

Originality/value

The proposed decentralization approach is interesting for the design of optimization algorithms that can run on computing systems that use principles of self‐organization and have no central control.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 1 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 24 October 2023

Zijing Ye, Huan Li and Wenhong Wei

Path planning is an important part of UAV mission planning. The main purpose of this paper is to overcome the shortcomings of the standard particle swarm optimization (PSO) such…

Abstract

Purpose

Path planning is an important part of UAV mission planning. The main purpose of this paper is to overcome the shortcomings of the standard particle swarm optimization (PSO) such as easy to fall into the local optimum, so that the improved PSO applied to the UAV path planning can enable the UAV to plan a better quality path.

Design/methodology/approach

Firstly, the adaptation function is formulated by comprehensively considering the performance constraints of the flight target as well as the UAV itself. Secondly, the standard PSO is improved, and the improved particle swarm optimization with multi-strategy fusion (MFIPSO) is proposed. The method introduces class sigmoid inertia weight, adaptively adjusts the learning factors and at the same time incorporates K-means clustering ideas and introduces the Cauchy perturbation factor. Finally, MFIPSO is applied to UAV path planning.

Findings

Simulation experiments are conducted in simple and complex scenarios, respectively, and the quality of the path is measured by the fitness value and straight line rate, and the experimental results show that MFIPSO enables the UAV to plan a path with better quality.

Originality/value

Aiming at the standard PSO is prone to problems such as premature convergence, MFIPSO is proposed, which introduces class sigmoid inertia weight and adaptively adjusts the learning factor, balancing the global search ability and local convergence ability of the algorithm. The idea of K-means clustering algorithm is also incorporated to reduce the complexity of the algorithm while maintaining the diversity of particle swarm. In addition, the Cauchy perturbation is used to avoid the algorithm from falling into local optimum. Finally, the adaptability function is formulated by comprehensively considering the performance constraints of the flight target as well as the UAV itself, which improves the accuracy of the evaluation model.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 17 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 17 January 2020

Yi Zhang, Haihua Zhu and Dunbing Tang

With the continuous upgrading of the production mode of the manufacturing system, the characteristics of multi-variety, small batch and mixed fluidization are presented, and the…

Abstract

Purpose

With the continuous upgrading of the production mode of the manufacturing system, the characteristics of multi-variety, small batch and mixed fluidization are presented, and the production environment becomes more and more complex. To improve the efficiency of solving multi-objective flexible job shop scheduling problem (FJSP), an improved hybrid particle swarm optimization algorithm (IH-PSO) is proposed.

Design/methodology/approach

After reviewing literatures on FJSP, an IH-PSO algorithm for solving FJSP is developed. First, IH-PSO algorithm draws on the crossover and mutation operations of genetic algorithm (GA) algorithm and proposes a new method for updating particles, which makes the offspring particles inherit the superior characteristics of the parent particles. Second, based on the improved simulated annealing (SA) algorithm, the method of updating the individual best particles expands the search scope of the domain and solves the problem of being easily trapped in local optimum. Finally, analytic hierarchy process (AHP) is used in this paper to solve the optimal solution satisfying multi-objective optimization.

Findings

Through the benchmark experiment and the production example experiment, it is verified that the proposed algorithm has the advantages of high quality of solution and fast speed of convergence.

Research limitations/implications

This method does not consider the unforeseen events that occur during the process of scheduling and cause the disruption of normal production scheduling activities, such as machine breakdown.

Practical implications

IH-PSO algorithm combines PSO algorithm with GA and SA algorithms. This algorithm retains the advantage of fast convergence speed of traditional PSO algorithm and has the characteristic of inheriting excellent genes. In addition, the improved SA algorithm is used to solve the problem of falling into local optimum.

Social implications

This research provides an efficient scheduling method for solving the FJSP problem.

Originality/value

This research proposes an IH-PSO algorithm to solve the FJSP more efficiently and meet the needs of multi-objective optimization.

Details

Kybernetes, vol. 49 no. 12
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 23 September 2013

Mingyu Li, Bo Wu, Pengxing Yi, Chao Jin, Youmin Hu and Tielin Shi

In the high-speed trains (HSTs) production process, assembly sequence planning (ASP) problems is an extremely core issue. ASP problems influence the economic cost, amount of…

Abstract

Purpose

In the high-speed trains (HSTs) production process, assembly sequence planning (ASP) problems is an extremely core issue. ASP problems influence the economic cost, amount of workers and the working time in the assembly process, seriously. In the design process of HSTs, the assembly sequence is usually given by experience, and the correctness of the assembly sequence is difficult to guarantee by experience and low effectiveness. The ASP based on improved discrete particle swarm optimization (IDPSO) algorithm was proposed to address these issues.

Design/methodology/approach

In view of the local convergence problem with basic DPSO in ASP, this paper presents an IDPSO, in which a chosen strategy of global optimal particle is introduced in, to solve the ASP problems in the assembly process of HSTs operation panel. The geometric feasibility, the assembly stability, and the number of assembly orientation changes of the assembly are chosen to be the optimization objective. Furthermore, the influences of the population size, the weight coefficient, and the learning factors to the stability and efficiency of IDPSO algorithm were discussed.

Findings

The results show that the IDPSO algorithm can obtain the global optimum efficiently, which is proved to be a more useful method for solving ASP problems than basic DPSO. The IDPSO approach could reduce the working time and economic cost of ASP problems in HSTs significantly.

Practical implications

The method may save the economic cost, reduce the amount of workers and save the time in the assembly process of HSTs. And also may change the method of ASP in design and manufacturing process, and make the production process in HSTs more efficiently.

Originality/value

A chosen strategy of global optimal particle is presented, which can overcome the local convergence problem with basic DPSO for solving ASP problems.

Article
Publication date: 2 January 2018

Shafiullah Khan, Shiyou Yang and Obaid Ur Rehman

The aim of this paper is to explore the potential of particle swarm optimization (PSO) algorithm to solve an electromagnetic inverse problem.

Abstract

Purpose

The aim of this paper is to explore the potential of particle swarm optimization (PSO) algorithm to solve an electromagnetic inverse problem.

Design/methodology/approach

A modified PSO algorithm is designed.

Findings

The modified PSO algorithm is a more stable, robust and efficient global optimizer for solving the well-known benchmark optimization problems. The new mutation approach preserves the diversity of the population, whereas the proposed dynamic and adaptive parameters maintain a good balance between the exploration and exploitation searches. The numerically experimental results of two case studies demonstrate the merits of the proposed algorithm.

Originality/value

Some improvements, such as the design of a new global mutation mechanism and introducing a novel strategy for learning and control parameters, are proposed.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 October 2017

Volkan Yasin Pehlivanoglu

The purpose of this paper is to improve the efficiency of particle optimization method by using direct and indirect surrogate modeling in inverse design problems.

Abstract

Purpose

The purpose of this paper is to improve the efficiency of particle optimization method by using direct and indirect surrogate modeling in inverse design problems.

Design/methodology/approach

The new algorithm emphasizes the use of a direct and an indirect design prediction based on local surrogate models in particle swarm optimization (PSO) algorithm. Local response surface approximations are constructed by using radial basis neural networks. The principal role of surrogate models is to answer the question of which individuals should be placed into the next swarm. Therefore, the main purpose of surrogate models is to predict new design points instead of estimating the objective function values. To demonstrate its merits, the new approach and six comparative algorithms were applied to two different test cases including surface fitting of a geographical terrain and an inverse design of a wing, the averaged best-individual fitness values of the algorithms were recorded for a fair comparison.

Findings

The new algorithm provides more than 60 per cent reduction in the required generations as compared with comparative algorithms.

Research limitations/implications

The comparative study was carried out only for two different test cases. It is possible to extend test cases for different problems.

Practical implications

The proposed algorithm can be applied to different inverse design problems.

Originality/value

The study presents extra ordinary application of double surrogate modeling usage in PSO for inverse design problems.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 January 2018

Obaid Ur Rehman, Shiyou Yang and Shafiullah Khan

The aim of this paper is to explore the potential of standard quantum particle swarm optimization algorithms to solve single objective electromagnetic optimization problems.

Abstract

Purpose

The aim of this paper is to explore the potential of standard quantum particle swarm optimization algorithms to solve single objective electromagnetic optimization problems.

Design/methodology/approach

A modified quantum particle swarm optimization (MQPSO) algorithm is designed.

Findings

The MQPSO algorithm is an efficient and robust global optimizer for optimizing electromagnetic design problems. The numerical results as reported have demonstrated that the proposed approach can find better final optimal solution at an initial stage of the iterating process as compared to other tested stochastic methods. It also demonstrates that the proposed method can produce better outcomes by using almost the same computation cost (number of iterations). Thus, the merits or advantages of the proposed MQPSO method in terms of both solution quality (objective function values) and convergence speed (number of iterations) are validated.

Originality/value

The improvements include the design of a new position updating formula, the introduction of a new selection method (tournament selection strategy) and the proposal of an updating parameter rule.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 20 January 2022

Vahid Goodarzimehr, Fereydoon Omidinasab and Nasser Taghizadieh

This paper aims to present a new hybrid algorithm of Particle Swarm Optimization and the Genetic Algorithm (PSOGA) to optimize the space trusses with continuous design variables…

147

Abstract

Purpose

This paper aims to present a new hybrid algorithm of Particle Swarm Optimization and the Genetic Algorithm (PSOGA) to optimize the space trusses with continuous design variables. The PSOGA is an efficient hybridized algorithm to solve optimization problems.

Design/methodology/approach

These algorithms have shown outstanding performance in solving optimization problems with continuous variables. The PSO conceptually models the social behavior of birds, in which individual birds exchange information about their position, velocity and fitness. The behavior of a flock is influencing the probability of migration to other regions with high fitness. The GAs procedure is based on the mechanism of natural selection. The present study uses mutation, random selection and reproduction to reach the best genetic algorithm by the operators of natural genetics. Thus, only identical chromosomes or particles can be converged.

Findings

In this research, using the idea of hybridization PSO and GA algorithms are hybridized and a new meta-heuristic algorithm is developed to minimize the space trusses with continuous design variables. To showing the efficiency and robustness of the new algorithm, several benchmark problems are solved and compared with other researchers.

Originality/value

The results indicate that the hybrid PSO algorithm improved in both exploration and exploitation. The PSO algorithm can be used to minimize the weight of structural problems under stress and displacement constraints.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of over 2000