Search results

1 – 10 of over 4000
Article
Publication date: 5 September 2016

Xiufeng Zhang, Huiqun Fu, Xitai Wang, Guanglin Li, Rong Yang and Ying Liu

This paper aims to find a new method that could be applied to the high and mid-grade prosthesis knee joint.

Abstract

Purpose

This paper aims to find a new method that could be applied to the high and mid-grade prosthesis knee joint.

Design/methodology/approach

Based on analysis, calculation, modeling, simulation and experimental study of the motion law of knee joint, this paper not only determines the structure and parameters of the knee joint and calculates the instantaneous center but also analyzes the stance stability and completes the optimization. With the help of experimental tests (fatigue test and gait curve test), the quality and performance of the designed knee joint is verified.

Findings

The experimental results show that the gait curve of the designed knee joint is much closer to health people. The designed prosthesis knee joint, with adjustable swing speed and gait curve which are close to health limb, has a better performance when compared to the ordinary knee joint with four-bar linkage structure.

Originality/value

This paper developed a prosthesis knee joint based on a novel design method that could be applied to the “high and mid” grade prosthesis knee joint and verified its function on an amputee performed the lower amputation, which could provide theoretical support for researches and designs related to prosthesis knee joint in future.

Details

Assembly Automation, vol. 36 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 28 May 2024

Pattaraporn Piwong, Tiwaporn Junkhaw, Kavinash Loganathan, Murallitharan Munisamy and Ratana Somrongthong

The known advantage of exercise for older adults who had knee pain is limited by low adherence to an exercise program. This study aims to determine the effect of the LINE…

Abstract

Purpose

The known advantage of exercise for older adults who had knee pain is limited by low adherence to an exercise program. This study aims to determine the effect of the LINE application on action and coping plans on exercise adherence, self-efficacy for exercise, specific self-efficacy (task, maintenance and recovery), functional performance (knee range of motion, time up and go, 30-s chair stand and knee outcome for activities of daily living) and knee pain scale among older adults with knee pain in suburban Bangkok, Thailand.

Design/methodology/approach

A total of 86 participants aged between 50 and 65 years old were divided into two groups for a period of 14 weeks: intervention (received action and coping plans via the LINE application) and control group (received usual care). All outcomes were measured at baseline and posttest except exercise adherence, which was collected postintervention.

Findings

A significant difference between intervention and control groups across all outcomes. Within group comparisons before and after, the intervention indicates that participants of the intervention group significantly improved posttest. In conclusion, using mobile health technology in combination with action and coping plans was found to enhance older adults’ exercise adherence and motivation, thus, decreasing knee pain while increasing functionality.

Originality/value

This study provides new insight into the combination of action and coping plans implementing with instant messaging through the LINE application which had a positive impact on enhance exercise adherence and knee functional performance of Thai elderly with knee pain.

Details

Working with Older People, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1366-3666

Keywords

Article
Publication date: 17 April 2024

Rafiu King Raji, Yini Wei, Guiqiang Diao and Zilun Tang

Devices for step estimation are body-worn devices used to compute steps taken and/or distance covered by the user. Even though textiles or clothing are foremost to come to mind in…

Abstract

Purpose

Devices for step estimation are body-worn devices used to compute steps taken and/or distance covered by the user. Even though textiles or clothing are foremost to come to mind in terms of articles meant to be worn, their prominence among devices and systems meant for cadence is overshadowed by electronic products such as accelerometers, wristbands and smart phones. Athletes and sports enthusiasts using knee sleeves should be able to track their performances and monitor workout progress without the need to carry other devices with no direct sport utility, such as wristbands and wearable accelerometers. The purpose of this study thus is to contribute to the broad area of wearable devices for cadence application by developing a cheap but effective and efficient stride measurement system based on a knee sleeve.

Design/methodology/approach

A textile strain sensor is designed by weft knitting silver-plated nylon yarn together with nylon DTY and covered elastic yarn using a 1 × 1 rib structure. The area occupied by the silver-plated yarn within the structure served as the strain sensor. It worked such that, upon being subjected to stress, the electrical resistance of the sensor increases and in turn, is restored when the stress is removed. The strip with the sensor is knitted separately and subsequently sewn to the knee sleeve. The knee sleeve is then connected to a custom-made signal acquisition and processing system. A volunteer was employed for a wearer trial.

Findings

Experimental results establish that the number of strides taken by the wearer can easily be correlated to the knee flexion and extension cycles of the wearer. The number of peaks computed by the signal acquisition and processing system is therefore counted to represent stride per minute. Therefore, the sensor is able to effectively count the number of strides taken by the user per minute. The coefficient of variation of over-ground test results yielded 0.03%, and stair climbing also obtained 0.14%, an indication of very high sensor repeatability.

Research limitations/implications

The study was conducted using limited number of volunteers for the wearer trials.

Practical implications

By embedding textile piezoresistive sensors in some specific garments and or accessories, physical activity such as gait and its related data can be effectively measured.

Originality/value

To the best of our knowledge, this is the first application of piezoresistive sensing in the knee sleeve for stride estimation. Also, this study establishes that it is possible to attach (sew) already-knit textile strain sensors to apparel to effectuate smart functionality.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 10 May 2024

Jintian Yun, Deqiang Zhang, Weisheng Cui, Shuai Li and Guan Miao

The purpose of this paper is to improve the problem of kinematics incompatibility of human–exoskeleton in the existing rigid lower-limb exoskeleton (LLE).

Abstract

Purpose

The purpose of this paper is to improve the problem of kinematics incompatibility of human–exoskeleton in the existing rigid lower-limb exoskeleton (LLE).

Design/methodology/approach

In this paper, following an introduction, the motion characteristics of the human knee joint and the design method of the exoskeleton were introduced. A kinematics model of the LLE based on cross-four-bar linkage was obtained. The structural parameters of the LLE mechanism were optimized by the particle swarm optimization algorithm. The predefined trajectories used in the optimization process were derived from the ankle joint, not the instantaneous center of rotation of the knee joint. Finally, the motion deviation of the optimization result was simulated, and the human–exoskeleton coordination experiment was designed to compare with the traditional single-axis knee joint in terms of comfort and coordination.

Findings

The lower limb exoskeleton mechanism obtained in this paper has a good tracking effect on human movement and has been improved in terms of comfort and coordination compared with the traditional single-axis knee joint.

Originality/value

The customized exoskeleton design method introduced in this paper is relatively simple, and the obtained exoskeleton has better movement coordination than the traditional exoskeleton. It can provide a reference for the design of lower limb exoskeleton and lower limb orthosis.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 11 January 2024

Yuepeng Zhang, Guangzhong Cao, Linglong Li and Dongfeng Diao

The purpose of this paper is to design a new trajectory error compensation method to improve the trajectory tracking performance and compliance of the knee exoskeleton in…

Abstract

Purpose

The purpose of this paper is to design a new trajectory error compensation method to improve the trajectory tracking performance and compliance of the knee exoskeleton in human–exoskeleton interaction motion.

Design/methodology/approach

A trajectory error compensation method based on admittance-extended Kalman filter (AEKF) error fusion for human–exoskeleton interaction control. The admittance controller is used to calculate the trajectory error adjustment through the feedback human–exoskeleton interaction force, and the actual trajectory error is obtained through the encoder feedback of exoskeleton and the designed trajectory. By using the fusion and prediction characteristics of EKF, the calculated trajectory error adjustment and the actual error are fused to obtain a new trajectory error compensation, which is feedback to the knee exoskeleton controller. This method is designed to be capable of improving the trajectory tracking performance of the knee exoskeleton and enhancing the compliance of knee exoskeleton interaction.

Findings

Six volunteers conducted comparative experiments on four different motion frequencies. The experimental results show that this method can effectively improve the trajectory tracking performance and compliance of the knee exoskeleton in human–exoskeleton interaction.

Originality/value

The AEKF method first uses the data fusion idea to fuse the estimated error with measurement errors, obtaining more accurate trajectory error compensation for the knee exoskeleton motion control. This work provides great benefits for the trajectory tracking performance and compliance of lower limb exoskeletons in human–exoskeleton interaction movements.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 8 February 2022

Jiaqi Zhang, Ming Cong, Dong Liu, Yu Du and Hongjiang Ma

This paper aims to get rid of the traditional basic principle of using the motor as the variable stiffness drive source, simplify the structure of the exoskeleton and reduce the…

Abstract

Purpose

This paper aims to get rid of the traditional basic principle of using the motor as the variable stiffness drive source, simplify the structure of the exoskeleton and reduce the quality of the exoskeleton. This paper proposes to use shape memory alloys (SMA) as the variable stiffness drive source.

Design/methodology/approach

In this study, SMA is used to construct the active variable stiffness unit, the Brinson constitutive model is used to establish a dynamic model to control the active variable stiffness unit and the above active variable stiffness unit is used to realize the force control function and construct a lightweight, variable stiffness knee exoskeleton.

Findings

The dynamic model constructed in this paper can preliminarily describe the phase transformation process of the active variable stiffness unit and realize the variable stiffness function of the knee exoskeleton. The variable stiffness exoskeleton can effectively reduce the driving error under the high-speed walking condition.

Originality/value

The contribution of this paper is to combine SMAs to construct an active variable stiffness unit, build a dynamic model for controlling the active variable stiffness unit and construct a lightweight, variable stiffness knee exoskeleton.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 May 2019

Mohamed Amine Alouane, Hala Rifai, Kwangtaek Kim, Yacine Amirat and Samer Mohammed

This paper aims to deal with the design of new hybrid approach for the assistance of the flexion extension movement of the knee joint.

Abstract

Purpose

This paper aims to deal with the design of new hybrid approach for the assistance of the flexion extension movement of the knee joint.

Design/methodology/approach

The control approach combines the use of a knee joint orthosis along with functional electrical stimulation (FES) within an assist-as-needed paradigm. An active impedance controller is used to assist the generation of muscular stimulation patterns during the extension sub-phase of the knee joint movement. The generated FES patterns are appropriately tailored to achieve flexion/extension movement of the knee joint, which allows providing the required assistance by the subject through muscular stimulation. The generated torque through stimulation is tracked by a non-linear disturbance observer and fed to the impedance controller to generate the desired trajectory that will be tracked using a standard proportional derivative controller.

Findings

The approach was tested in experiments with two healthy subjects. Results show satisfactory performances in terms of estimating the knee joint torque, as well as in terms of cooperation between the FES and the orthosis actuator during the execution of the knee joint flexion/extension movements.

Originality/value

The authors designed a new hybrid approach for the assistance of the flexion extension movement of the knee joint, which has not been studied yet. The control approach combines the use of a knee joint orthosis along with FES within an assist-as-needed paradigm.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 August 2017

Du-Xin Liu, Xinyu Wu, Wenbin Du, Can Wang, Chunjie Chen and Tiantian Xu

The purpose of this paper is to model and predict suitable gait trajectories of lower-limb exoskeleton for wearer during rehabilitation walking. Lower-limb exoskeleton is widely…

Abstract

Purpose

The purpose of this paper is to model and predict suitable gait trajectories of lower-limb exoskeleton for wearer during rehabilitation walking. Lower-limb exoskeleton is widely used for assisting walk in rehabilitation field. One key problem for exoskeleton control is to model and predict suitable gait trajectories for wearer.

Design/methodology/approach

In this paper, the authors propose a Deep Spatial-Temporal Model (DSTM) for generating knee joint trajectory of lower-limb exoskeleton, which first leverages Long-Short Term Memory framework to learn the inherent spatial-temporal correlations of gait features.

Findings

With DSTM, the pathological knee joint trajectories can be predicted based on subject’s other joints. The energy expenditure is adopted for verifying the effectiveness of new recovery gait pattern by monitoring dynamic heart rate. The experimental results demonstrate that the subjects have less energy expenditure in new recovery gait pattern than in others’ normal gait patterns, which also means the new recovery gait is more suitable for subject.

Originality/value

Long-Short Term Memory framework is first used for modeling rehabilitation gait, and the deep spatial–temporal relationships between joints of gait data can obtained successfully.

Details

Assembly Automation, vol. 37 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 2 March 2012

Rafael R. Torrealba, José Cappelletto, Leonardo Fermín, G. Fernández‐López and Juan C. Grieco

The purpose of this paper is to generate a virtual knee angle reference to be followed by a knee prosthesis control, using an adaptive central pattern generator (CPG). Also, to…

Abstract

Purpose

The purpose of this paper is to generate a virtual knee angle reference to be followed by a knee prosthesis control, using an adaptive central pattern generator (CPG). Also, to study the feasibility of this approach to implement a continuous control strategy on the prosthesis.

Design/methodology/approach

A CPG based on amplitude controlled phase oscillators (ACPOs) to track the current percentage of gait cycle on the prosthesis is proposed. Then, the virtual knee angle reference is generated along gait cycle, by interpolation with the corresponding angle of a sound knee. The structure and coupling of the CPG, as well as the control strategy are presented.

Findings

The coupling of the CPG with real gait on the prosthesis was proven, regardless of gait speed. Also, it was found that the maximum knee angle reached during walking is proportional to gait speed. Finally, generation of virtual knee angle reference to be followed by a prosthesis is demonstrated.

Research limitations/implications

As only one event detected along gait cycle was used to update the CPG phase, the response to gait speed changes might be slow. Updating the CPG with more events remains for a future work.

Practical implications

The coupling of the CPG with real gait on the prosthesis results in a continuous gait cycle tracker, useful for any control strategy to be applied.

Originality/value

It is the first time a bio‐inspired concept as CPGs is applied to the prosthetic field. This could mean the beginning of a new era of cybernetic prostheses, which reproduce the lost limb and also the control functions of it.

Article
Publication date: 1 February 2003

Hugh Herr and Ari Wilkenfeld

A magnetorheological knee prosthesis is presented that automatically adapts knee damping to the gait of the amputee using only local sensing of knee force, torque, and position…

3774

Abstract

A magnetorheological knee prosthesis is presented that automatically adapts knee damping to the gait of the amputee using only local sensing of knee force, torque, and position. To assess the clinical effects of the user‐adaptive knee prosthesis, kinematic gait data were collected on four unilateral trans‐femoral amputees. Using the user‐adaptive knee and a conventional, non‐adaptive knee, gait kinematics were evaluated on both affected and unaffected sides. Results were compared to the kinematics of 12 age, weight and height matched normals. We find that the user‐adaptive knee successfully controls early stance damping, enabling amputee to undergo biologically‐realistic, early stance knee flexion. These results indicate that a user‐adaptive control scheme and local mechanical sensing are all that is required for amputees to walk with an increased level of biological realism compared to mechanically passive prosthetic systems.

Details

Industrial Robot: An International Journal, vol. 30 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 4000