Search results

1 – 3 of 3
Article
Publication date: 27 September 2022

Chafika Ali Ahmed, Abdelmadjid Si Salem, Souad Ait Taleb and Kamal Ait Tahar

This paper aims to investigate the experimental behavior and the reliability of concrete columns repaired using fiber-reinforced polymers (FRPs) under axial compression loading…

Abstract

Purpose

This paper aims to investigate the experimental behavior and the reliability of concrete columns repaired using fiber-reinforced polymers (FRPs) under axial compression loading. The expression of the ultimate axial resistance was assessed from the experimental data of damaged concrete cylinders repaired by externally bonded double-FRP spiral strips.

Design/methodology/approach

The tested columns bearing capacity mainly depends of the elasticity modulus of both damaged and undamaged concrete have been considered in addition to the applied load and the cylinder diameter as random variables in the expression of the failure criterion. The reliability indicators were assessed using first order second moment method.

Findings

The emphasized test results, statistically fitted show that the strength has been retrofitted for all repaired specimens whatever the degree of initial damage. However, the gain in axial strength is inversely proportional to the degree of damage.

Originality/value

The efficiency of a new FRP repair procedure using double-spiral strips was studied. This research provides a technical and economical solution for retrofitting existing concrete columns. Finally, the random character of the variables that govern the studied system shows the accuracy and safety of the proposed original design.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 23 March 2020

Abdelmadjid Si Salem, Fatma Taouche-Kkheloui and Kamal Ait Tahar

The present study aims to experimentally investigate the flexural and buckling performances of novel sandwich panels manufactured with sawdust-based modified mortar core and both…

Abstract

Purpose

The present study aims to experimentally investigate the flexural and buckling performances of novel sandwich panels manufactured with sawdust-based modified mortar core and both polypropylene and reinforced polymer plates as skins.

Design/methodology/approach

The experimental investigation includes two main steps, characterization tests were firstly carried out in order to identify the laws behavior of the constitutive raw materials. The second one investigates 42 sandwich panels tested under three-points bending and buckling according to standard norms.

Findings

The emphasized test results in terms of bearing capacity; buckling strength, ductility, and failure mechanisms confirm that the overall and observed behavior of tested eco-friendly panels was in general satisfactory compared with experimental values reported in the literature. Indeed, the failure modes under bending and buckling conditions were summarized as shear/crimping failure of the sawdust-based mortar core without debonding of the core–skins interface.

Originality/value

The paper provides original information about the development of novel sandwich panels with a bio-based core and polymer skins for construction usage as interior partitioning walls.

Details

International Journal of Structural Integrity, vol. 12 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 21 October 2021

Bouamra Youcef, Fatma Taouche-Kheloui and Kamal Ait Tahar

The purpose of this study is experimental research of the mechanical behavior of slab reinforced by cork composite patch submitted to an eccentric progressive compressive load…

Abstract

Purpose

The purpose of this study is experimental research of the mechanical behavior of slab reinforced by cork composite patch submitted to an eccentric progressive compressive load applied to on impact rectangle of dimensions 28 × 23 cm2. An analytical model and numerical modeling by finite elements are performed. This study is motivated by the evaluation of the effectiveness of this type of partial reinforcement to improve strength and ductility. The results are given by load-displacement curves, tensile damages cartography and ultimate strength histogram.

Design/methodology/approach

In experimental protocol, the following two parameters have been considered: the dimensions of the patch and the eccentricity of the load. The sections of the patches are calculated so that the ratio (XP/YP) patch is proportional to the ratio (LD/lD), with a step of 6 cm longitudinally and 4 cm transversely. Several dimensions patches are considered: (6 × 4) cm2, (12 × 8) cm2 and (18 × 12) cm2. The eccentric punching loading test was performed with an eccentricity of the load (1/3) L’ and (2/3) L’ compared to the center of gravity of the slab. Taking into account the eccentricity of the load in estimating the rupture strength, the equations are developed. Thus, numerical simulations are carried, to extract tensile damages cartography.

Findings

The results show that the rupture begins with the appearance of cracks in the unreinforced area. For an eccentricity of 1/3L’, the best strength/section ratio is obtained for patch (12 × 8) cm2, whereas for an eccentricity de 2/3L’, the patch (6 × 4) cm2 gives a better resistance. The results highlight the influence of the composite on the ultimate load. The force-displacement relations are little modified in the elastic phase. The experimental results have been compared with the theoretical models showing a good correlation.

Originality/value

The strength and ductility are depended on the dimensions of the patch and the eccentricity of the load. The use of a patch to cover the most stressed area, in the event of an eccentric axial load is a very economical solution compared to the total reinforcement. The damage field shows that the evolution of cracks depends on dimensions and the position of the patch. Indeed, the eccentricity of the vertical load induces an additional bending moment that will influence the fracture surface. The rupture load and ultimate displacement increase with the surface of the patch.

Details

World Journal of Engineering, vol. 20 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 3 of 3