Search results

1 – 10 of 219
Article
Publication date: 26 July 2021

Cong Yin, Yujing Zhou, Peiyu He and Meng Tu

This research takes the transfer behavior of users from Tencent QQ to WeChat as an example to discuss the wider transfer behavior of social media users on the Internet.

Abstract

Purpose

This research takes the transfer behavior of users from Tencent QQ to WeChat as an example to discuss the wider transfer behavior of social media users on the Internet.

Design/methodology/approach

This paper collects data through a combination of offline interviews and online questionnaire surveys, and utilizes data analysis tools to construct structural equation modeling (SEM). Using Statistical Product and Service Solutions (SPSS) Statistics 22.0 and Analysis of Moment Structures (AMOS) 22.0 software with SEM, this study was carried out to provide reasonable statistical support for relevant proposed hypotheses based on 368 effective samples acquired through the questionnaire.

Findings

The findings of this study show that subjective norm, transfer experience, social communication, and knowledge acquisition all have significant associations with transfer intention and switching behavior. To be specific, transfer intention exerts a positive association on switching behavior; function setting, privacy protection and personal innovation have a favorable association with transfer intention; transfer cost has a significantly negative relationship with transfer intention and switching behavior; function setting has no important relationship on switching behavior.

Originality/value

The research results provide a reference for improving the viscosity and loyalty of social media users in the new era and resolving the problem of user churn.

Details

Library Hi Tech, vol. 41 no. 3
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 1 September 2017

Xiaofang Chen, Xiaohua Chen, Cong Yin and Wenlei Xia

The planning and construction of innovative university science and technology parks are facilitated on the basis of urban planning reconstruction, and the sustainable development…

Abstract

The planning and construction of innovative university science and technology parks are facilitated on the basis of urban planning reconstruction, and the sustainable development of our country is the main basis for the implementation of the innovation plan and future design of university science and technology parks. However, some aspects of the transformation of a city have impeded the planning and development of university science parks. In order to solve this problem, in this study, the overall planning and successful establishment of science and technology parks in well-known universities were analyzed; and “Cambridge Future” was selected as the practical example and basis for the construction of innovative university science and technology parks; and then CATIC Science City in Nanjing was used as the object of empirical analysis. In addition, the construction of these parks in universities was evaluated through the case analysis and the excellent design strategies and results, and the planning model and construction concept of these parks were proposed after the contradiction between the transition stage of cities and the design of university science parks was resolved.

Details

Open House International, vol. 42 no. 3
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 22 January 2024

Cong Liu, Yanguo Yin and Rongrong Li

This study aims to investigate the effects of ball–material ratio on the properties of mixed powders and Cu-Bi self-lubricating alloy materials.

Abstract

Purpose

This study aims to investigate the effects of ball–material ratio on the properties of mixed powders and Cu-Bi self-lubricating alloy materials.

Design/methodology/approach

Cu-Bi mixed powder was ball milled at different ball–material ratios, and the preparation of Cu-Bi alloy materials was achieved through powder metallurgy technology. Scanning electron microscopy, X-ray diffraction and Raman spectroscopy were conducted to study the microstructure and phase composition of the mixed powder. The apparent density and flow characteristics of mixed powders were investigated using a Hall flowmeter. Tests on the crushing strength, impact toughness and tribological properties of self-lubricating alloy materials were conducted using a universal electronic testing machine, 300 J pendulum impact testing machine and M200 ring-block tribometer, respectively.

Findings

With the increase in ball–material ratio, the spherical copper matrix particles in the mixed powder became lamellar, the mechanical properties of the material gradually reduced, the friction coefficient of the material first decreased and then stabilized and the wear rate decreased initially and then increased. The increase in the ball–material ratio resulted in the fine network distribution of the Bi phase in the copper alloy matrix, which benefitted its enrichment on the worn surface for the formation a lubricating film and improvement of the material’s tribological performance. However, a large ball–material ratio can excessively weaken the mechanical properties of the material and reduce its wear resistance.

Originality/value

The effects of ball–material ratio on Cu-Bi mixed powder and material properties were clarified. This work provides a reference for the mechanical alloying process and its engineering applications.

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Book part
Publication date: 10 May 2023

N. Ambika

Need: The previous suggestion assists with administrative methodology. The contribution explores customer understandings in different industry and transaction texts. They include…

Abstract

Need: The previous suggestion assists with administrative methodology. The contribution explores customer understandings in different industry and transaction texts. They include online education, video marketing, and entertainment analytics. The communication needs to be detailed to improve the system.

Purpose: The suggestion aims to improve the previous contribution by enhancing the user experience. The study increases the usage of video content. The recommendation brings better business to the video host.

Methodology: The work includes the machine learning algorithm to understand the user and improve the client’s experience. The recommendation uses the Apriori algorithm to map various attributes of the trainer and learners. The suggested work has three features. It focusses on video possessions, educator feelings, physical characteristics, and visible aesthetic characteristics. The study considers 1,200 different samples.

Findings: The work simulates using python. It improves efficiency by 29.5% compared to previous work.

Practical Implications: Machine learning has pitched in to understand diverse customers’ behaviour. Various features affecting the behaviour are collected and analysed by the system. The study intends to find an appropriate mapping between the attributes of the user and educator.

Details

Contemporary Studies of Risks in Emerging Technology, Part A
Type: Book
ISBN: 978-1-80455-563-7

Keywords

Article
Publication date: 28 February 2019

Timothy Oluseun Adekunle

The purpose of this paper is to examine the Summer performance, comfort, and heat stress in structural timber buildings. The research utilises building simulation as a tool to…

Abstract

Purpose

The purpose of this paper is to examine the Summer performance, comfort, and heat stress in structural timber buildings. The research utilises building simulation as a tool to investigate the performance of the case study buildings under non-extreme weather conditions.

Design/methodology/approach

The research explores three UK sites using the test reference year (TRY) weather files for the current and future weather conditions. The study focuses on the Summer performance and heat stress in non-extreme weather conditions; therefore, the Design Summer Year (DSY) weather files are not used for the simulations. The simulation data are calibrated and validated using the measured data from the field study.

Findings

The results revealed the mean predicted temperatures varied from 20.2–20.8°C for the 2000s. The mean temperatures for the 2030s ranged from 23.1 to 24.2°C. Higher temperatures are predicted at the buildings in the Southeast site than the Midlands and the Northwest sites. The results revealed that there is no significant improvement in the thermal environment when the floor area and the floor-to-ceiling height are increased. However, the study showed that the integration of different design interventions can improve the future performance and resilience of the buildings in various weather conditions.

Research limitations/implications

By applying the wet-bulb globe temperature (WBGT) and the Universal Thermal Comfort Index (UTCI) mathematical models to calculate the heat stress at the buildings, the study proposes the WBGT of 20.0°C and the UTCI of 24.1°C as possible heat stress indicators for occupants of the buildings in the 2030s.

Practical implications

On the one hand, the results revealed the maximum temperatures in some of the case study buildings exceed the comfort threshold (28°C). On the other hand, the study showed that occupants of the buildings are not prone to extreme Summertime overheating and heat stress under moderate weather conditions. However, different outcomes may be predicted if DSY weather files for the selected sites are considered.

Originality/value

This study is the first reported work to explore building simulation and mathematical equations to investigate Summer performance, comfort and heat stress indexes in timber buildings under moderate weather conditions in different regional sites in the UK.

Article
Publication date: 1 August 1999

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper…

2608

Abstract

This paper gives a bibliographical review of the finite element methods (FEMs) applied to the analysis of ceramics and glass materials. The bibliography at the end of the paper contains references to papers, conference proceedings and theses/dissertations on the subject that were published between 1977‐1998. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, ferrites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.

Details

Engineering Computations, vol. 16 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 July 2021

Cong Liu, Yanguo Yin, Baohong Tong and Guotao Zhang

This study aims to investigate the effect of MoS2 powder on tribological properties of sliding interfaces.

Abstract

Purpose

This study aims to investigate the effect of MoS2 powder on tribological properties of sliding interfaces.

Design/methodology/approach

Loose MoS2 powder was introduced in the gap of point-contact friction pairs, and sliding friction test was conducted using a testing machine. Friction noise, wear mark appearance, microstructure and wear debris were characterized with a noise tester, white-light interferometer, scanning electron microscope and ferrograph, respectively. Numerical simulation was also performed to analyze the influence of MoS2 powder on tribological properties of the sliding interface.

Findings

MoS2 powder remarkably improved the lubrication performance of the sliding interface, whose friction coefficient and wear rate were reduced by one-fifth of the interface values without powder. The addition of MoS2 powder also reduced stress, plastic deformation and friction temperature in the wear mark. The sliding interface with MoS2 powder demonstrated lower friction noise and roughness compared with the interface without powder lubrication. The adherence of MoS2 powder onto the friction interface formed a friction film, which induced the wear mechanism of the sliding interface to change from serious cutting and adhesive wear to delamination and slight cutting wear under the action of normal and shear forces.

Originality/value

Tribological characteristics of the interface with MoS2 powder lubrication were clarified. This work provides a theoretical basis for solid-powder lubrication and reference for its application in engineering.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2020-0150/

Details

Industrial Lubrication and Tribology, vol. 73 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 April 2024

Zhen Li, Jianqing Han, Mingrui Zhao, Yongbo Zhang, Yanzhe Wang, Cong Zhang and Lin Chang

This study aims to design and validate a theoretical model for capacitive imaging (CI) sensors that incorporates the interelectrode shielding and surrounding shielding electrodes…

Abstract

Purpose

This study aims to design and validate a theoretical model for capacitive imaging (CI) sensors that incorporates the interelectrode shielding and surrounding shielding electrodes. Through experimental verification, the effectiveness of the theoretical model in evaluating CI sensors equipped with shielding electrodes has been demonstrated.

Design/methodology/approach

The study begins by incorporating the interelectrode shielding and surrounding shielding electrodes of CI sensors into the theoretical model. A method for deriving the semianalytical model is proposed, using the renormalization group method and physical model. Based on random geometric parameters of CI sensors, capacitance values are calculated using both simulation models and theoretical models. Three different types of CI sensors with varying geometric parameters are designed and manufactured for experimental testing.

Findings

The study’s results indicate that the errors of the semianalytical model for the CI sensor are predominantly below 5%, with all errors falling below 10%. This suggests that the semianalytical model, derived using the renormalization group method, effectively evaluates CI sensors equipped with shielding electrodes. The experimental results demonstrate the efficacy of the theoretical model in accurately predicting the capacitance values of the CI sensors.

Originality/value

The theoretical model of CI sensors is described by incorporating the interelectrode shielding and surrounding shielding electrodes into the model. This comprehensive approach allows for a more accurate evaluation of the detecting capability of CI sensors, as well as optimization of their performance.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 8 September 2022

Xie Yidong, Sun Peiweni, Li Qiang, Fu Caozheng, AiHua Zhu, Jianwei Yang and Chaochao Ma

The CL60 steel wheels of metro vehicles running on a specific line need frequent reprofiling due to rapid wear. Considering this problem, a new material for metro wheels was…

124

Abstract

Purpose

The CL60 steel wheels of metro vehicles running on a specific line need frequent reprofiling due to rapid wear. Considering this problem, a new material for metro wheels was designed. The friction and wear properties of the new material were studied, to reduce the wear rate and extend the service life of metro wheels.

Design/methodology/approach

Wheel specimens made of the two steel materials were tested using a GPM-60 wear tester under laboratory conditions. A field test was conducted on a specific metro line to track the wear in wheels made of the new material and CL60 steel wheels.

Findings

Under the laboratory conditions, the wear loss in the new material was 24.44% lower than that in CL60 steel. The field test revealed that compared to CL60 steel wheels, the new CL60 steel wheels showed a 19.42% decrease in tread wear on average. The field measurements for the wheels made of the new material are consistent with the results of laboratory simulation, suggesting relatively high wear resistance of the new material.

Practical implications

The results of the study can provide guidance on how to properly select steel material for metro wheels to avoid rapid wear and frequent reprofiling and reduce operating costs.

Originality/value

A new material for metro wheels was designed and developed by optimizing the content of Cr, Si, Mn, V and other elements. This material proved to have better wear resistance in both laboratory and field testing.

Details

Industrial Lubrication and Tribology, vol. 74 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 13 October 2022

Junmei Zhang and Hongyi Li

This study aims to investigate whether temperature affects the product quality of exporters and whether the effect is non-linear. More specifically, whether the impact of high…

Abstract

Purpose

This study aims to investigate whether temperature affects the product quality of exporters and whether the effect is non-linear. More specifically, whether the impact of high temperatures differs from the impact of low temperatures, and whether different types of companies or industries are affected differently.

Design/methodology/approach

The paper uses detailed data covering all Chinese exporters from 2000 to 2016 to estimate the effects of temperature on the product quality of export firms. To clarify the relationship between them, the authors use a semi-parametric regression method, trying to test whether there is a non-linear relationship between temperature and the export quality of firms.

Findings

The increase in the number of high temperature days significantly reduces the quality of exported products, and this negative effect increases as the temperature rises. High temperature has the most significant negative impact on export quality for firms with low technical complexity, private firms and firms with no intermediate imports and located in historical hot cities. Product quality of both labor-intensive and capital-intensive firms will be affected by heat. High temperatures have the greatest negative impact on the export quality of newly entering products, followed by exiting products, with the least negative impact on persisting product.

Originality/value

To the best of the authors’ knowledge, this paper is the first to examine the impact of temperature on the quality of economic development. The findings of this paper again show that the potential economic impacts of global warming are huge. In addition to some potentially devastating impacts in the future, global warming is already causing imperceptible impacts in the present. Public and economic agents need to fully understand the possible adverse impacts of climate change and take corresponding adaptation measures to cope with global warming.

Details

International Journal of Climate Change Strategies and Management, vol. 15 no. 4
Type: Research Article
ISSN: 1756-8692

Keywords

1 – 10 of 219