Search results

1 – 5 of 5
Article
Publication date: 14 November 2023

Haocheng Bi, Muming Hao, Baojie Ren, Sun Xinhui, Tianzhao Li and Kailiang Song

The purpose of this paper is to investigate the monitoring of the friction condition of mechanical seals.

Abstract

Purpose

The purpose of this paper is to investigate the monitoring of the friction condition of mechanical seals.

Design/methodology/approach

Acoustic emission signals from the friction of the seal end face were obtained, and their bispectral characteristics were extracted. The variation of non-Gaussian information with the degree of friction was investigated, and by combining bispectral characteristics with information entropy, a bispectral entropy index was established to represent the friction level of the seal end face.

Findings

In the start-up stage, the characteristic frequency amplitude of the micro-convex body contact is obvious, the friction of the end face is abnormal, the complexity of the system increases in a short time and the bispectral entropy rises continuously in a short time. In the stable operation stage, the characteristic frequency amplitude of the micro-convex body contact varies with the intensity of the seal face friction, the seal face friction is stable and the bispectral entropy fluctuates up and down for a period of time.

Originality/value

The bispectral analysis method is applied to the seal friction monitoring, the seal frequency domain characteristics are extracted, the micro-convex body contact characteristic frequency is defined and the bispectral entropy characteristic index is proposed, which provides a certain theoretical basis for the mechanical seal friction monitoring.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2023-0242/

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 28 June 2023

Liu Fuyu, Yu Bo, Li Yongfan, Ren Baojie, Hao Muming, Li Zhentao and Li Xiaozu

The purpose of this paper is to study the dynamic characteristics of mechanical face seals with liquid-lubricated inclined elliptical grooves.

Abstract

Purpose

The purpose of this paper is to study the dynamic characteristics of mechanical face seals with liquid-lubricated inclined elliptical grooves.

Design/methodology/approach

The steady-state and perturbation Reynolds control equations of liquid films were established. The film pressure and the liquid film dynamic coefficients were obtained, impacts of groove structures on the liquid film dynamic characteristic coefficients were analyzed.

Findings

The analysis results indicate that the axial dynamic stiffness and damping coefficients of the liquid film seal with inclined elliptical grooves are far greater than those of the angular directions. Furthermore, the dynamic stiffness coefficient of the liquid film with the nonclosed inclined elliptical grooves is higher than those with the closed grooves, whereas the dynamic damping coefficient of the liquid film is lower.

Originality/value

The effects of inclined elliptical groove structures on the dynamic characteristics of the liquid film seal are investigated. The results presented are expected to enrich the theoretical basis of optimizing the dynamic performance of liquid film seals with textures.

Details

Industrial Lubrication and Tribology, vol. 75 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 July 2020

Zhentao Li, Xiaoli Yin, Jixiang Yue, Fuyu Liu, Muming Hao and Baojie Ren

The purpose of this paper is to study the effects of operating conditions including process coefficient, lubricant viscosity and cavitation pressure on the cavitation of spiral…

Abstract

Purpose

The purpose of this paper is to study the effects of operating conditions including process coefficient, lubricant viscosity and cavitation pressure on the cavitation of spiral groove liquid-film seal (SG-LFS).

Design/methodology/approach

A mathematical model of SG-LFS is established based on the JFO boundary and a relative density is introduced. The universal governing equation after a coordinate transformation is discretized by the FVM method and solved by the Gauss-Seidel relaxation scheme.

Findings

The results indicate that the two-dimensional size of cavitation and cavitation degree are affected significantly by the process coefficient and lubricant viscosity but the effect of cavitation pressure can be ignored.

Originality/value

The effect mechanisms of operating conditions on the cavitation of SG-LFS are studied by the JFO boundary and cavitation degree characterized by a relative density. The results presented are helpful to perfect and deeply understand the cavitation mechanism of liquid-film seal.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2020-0083/

Details

Industrial Lubrication and Tribology, vol. 72 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 January 2022

Zhen-Tao Li, Yangli Zhou, Xiaoli Yin, Muming Hao, Dechao Meng and Baojie Ren

The purpose of this paper is to investigate the effects of surface topography, including surface roughness, waviness and taper, on the cavitation of liquid film lubricated…

Abstract

Purpose

The purpose of this paper is to investigate the effects of surface topography, including surface roughness, waviness and taper, on the cavitation of liquid film lubricated mechanical seals (LFL-MS).

Design/methodology/approach

A universal governing equation considering cavitation is established, and an equivalent relative density is defined to characterize the cavitation degree. The equation is discretized by the finite volume method and solved by the Gauss–Seidel relaxation scheme.

Findings

Results indicate that both radial length and a circumferential width of the cavitation zone and cavitation degree are affected significantly by the waviness amplitude and taper, but the effect of surface roughness is limited.

Originality/value

Effect mechanism of surface topography on the cavitation of LFL-MS is investigated and cavitation degree is reflected by an equivalent relative density. The results further help to comprehensively explore the cavitation mechanism.

Details

Industrial Lubrication and Tribology, vol. 74 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 September 2018

Yingjun Zhang, Baojie Dou, Yawei Shao, Xue-Jun Cui, Yanqiu Wang, Guozhe Meng and Xiu-Zhou Lin

This paper aim to investigate the influence of PA on the corrosion behavior of carbon steel with blast cleaned or pre-rusted treatments, and interpret the inhibition mechanism of…

Abstract

Purpose

This paper aim to investigate the influence of PA on the corrosion behavior of carbon steel with blast cleaned or pre-rusted treatments, and interpret the inhibition mechanism of PA on the steel with different surface treatments.

Design/methodology/approach

The influence of PA on the corrosion behavior of blast cleaned or rusty steel was investigated by means of electrochemical impedance spectroscopy (EIS). The EIS data were analyzed using the @ZsimpWin commercial software. The morphology and component of steel after immersion were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), Fourier transformation infrared (FTIR) and X-ray diffractometer (XRD).

Findings

EIS analysis results indicated that PA had good corrosion inhibition for blast cleaned or rusty steel. SEM, EDS, FTIR and XRD further indicated that PA had two main corrosion inhibition processes for the corrosion inhibition of blast cleaned or rusty steel: corrosion dissolution and formation of protective barrier layers.

Originality/value

Most published works focus the attention only toward the effect of corrosion inhibitor for the clean metal surfaces. However, the surface condition of metal sometimes is unsatisfactory in the practical application of corrosion inhibitor, such as existing residual rust. Some studies also have shown that several corrosion inhibitors could be applied on partially rusted substrates. These inhibitors mainly include tannins and phosphoric acid, but not PA. Therefore, the authors investigated the influence of PA on the corrosion behavior of carbon steel with blast cleaned or pre-rusted treatments in this paper.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 5 of 5