Search results

1 – 2 of 2
Article
Publication date: 17 October 2022

Maryam Gholami, Amir Hossein Mahvi, Fahimeh Teimouri, Mohammad Hassan Ehrampoush, Abbasali Jafari Nodoushan, Sara Jambarsang and Mohammad Taghi Ghaneian

This paper aims to study the application of high-tolerance and flexible indigenous bacteria and fungi, along with the co-metabolism in recycled paper and cardboard mill (RPCM…

Abstract

Purpose

This paper aims to study the application of high-tolerance and flexible indigenous bacteria and fungi, along with the co-metabolism in recycled paper and cardboard mill (RPCM) wastewater treatment (WWT).

Design/methodology/approach

The molecular characterization of isolated indigenous bacteria and fungi was performed by 16S rRNA and 18S rRNA gene sequencing, respectively. Glucose was used as a cometabolic substrate to enhance the bioremediation process.

Findings

The highest removal efficiency was achieved for both chemical oxygen demand (COD) and color [78% COD and 45% color removal by Pseudomonas aeruginosa RW-2 (MZ603673), as well as approximately 70% COD and 48% color removal by Geotrichum candidum RW-4 (ON024394)]. The corresponding percentages were higher in comparison with the efficiency obtained from the oxidation ditch unit in the full-scale RPCM WWT plant.

Originality/value

Indigenous P. aeruginosa RW-2 and G. candidum RW-4 demonstrated effective capability in RPCM WWT despite the highly toxic and low biodegradable nature, especially with the assistance of glucose.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 March 2021

Zeinab Hosseini, Mohammad Taghi Ghaneian, Mahin Ghafourzade and Abbasali Jafari Nodoushan

This paper aims to evaluate the bioremediation [chemical oxygen demand (COD) and color removal] of the effluent from the cardboard recycling industry in Yazd, central province of…

Abstract

Purpose

This paper aims to evaluate the bioremediation [chemical oxygen demand (COD) and color removal] of the effluent from the cardboard recycling industry in Yazd, central province of Iran, using mixed fungal culture.

Design/methodology/approach

First, the effluent samples from the cardboard recycling industry were cultured on potato dextrose agar medium to isolate native fungal colonies. The grown colonies were then identified using morphological macroscopic and microscopic characteristics to choose the dominant fungi for bioremediations. The mixed cultures of Aspergillus niger, Aspergillus flavus and Penicillium digitatum were finally used for bioremediation experiments of the cardboard recycling industry. A suspension containing 1 × 106 CFU/ml of fungal spores was prepared from each fungus, separately and their homogenous mixture. Sewage samples were prepared and sterilized and used at 25%, 50% and 90% dilutions and pH levels of 5, 7 and 8 for bioremediation tests using mixed fungal spores. Following that, 10 ml of the mixed fungal spores were inoculated into the samples for decolorization and COD removal and incubated for 10 days at 30°C. The amount of COD removal and decolorization were measured before incubation and after 3, 6 and 10 days of inoculation. In this research, the color was measured by American Dye Manufacturer Institute and COD by the closed reflux method. The results of the present study were analyzed using SPSS 21 statistical software and one-way ANOVA tests at p-value < 0.05.

Findings

The results of this research showed that the mean decolorization by mixed fungal culture over 10 days at pH levels of 5, 7 and 8 were 44.40%, 45.00% and 36.84%, respectively, and the mean COD removal efficiency was 71.59%, 73.54% and 16.55%, respectively. Moreover, the mean decolorization at dilutions of 25%, 50% and 90% were 45.00%, 31.93% and 30.53%, respectively, and the mean COD removal efficiency was 73.54%, 62.38% and 34.93%, respectively. Therefore, the maximal COD removal and decolorization efficiency was obtained at dilution of 25% and pH 7.

Originality/value

Given that limited studies have been conducted on bioremediation of the effluent from the cardboard recycling industry using fungal species, this research could provide useful information on the physicochemical properties of the effluent in this industry.

Details

Pigment & Resin Technology, vol. 51 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 2 of 2